The Superconducting State of the LiC6 Compound: The Effective Triangular Lattice Model
Main Article Content
Abstract
Thermodynamic parameters of the superconducting state of the LiC6 compound were calculated. Based on experimental data and results obtained using the density functional theory, the following input parameters for the effective triangular lattice model were adopted: hopping integral t = 355 meV, chemical potential µ = - 4.37 t, Coulomb pseudopotential µ* = 0.01, phonon energy ω0=0.052 t, and electron–phonon interaction energy g0 = 0.00931 t. Calculations allowed us to reproduce the experimental values of the electron–phonon coupling constant λ = 0.58 ± 0.05 and critical temperature TC = 5.9 K. The dimensionless thermodynamic ratios were as follows: RΔ = 3.73, RC = 1.71, and RH = 0.16. The obtained RΔ , RC , RH values were compared with experimental data and density functional theory. It was shown that within the framework of the effective triangular lattice model, the thermodynamic properties of the superconducting phase of LiC6 can be correctly reproduced. Additionally, the anisotropic structure of the electron–phonon coupling function and the anisotropic logarithmic phonon frequency function were discussed.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
C. Berger, Z. Song, T. Li et al., J. Phys. Chem. B 108, 19912 (2004)
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)
C.-H. Park, F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 086804 (2007)
D.K. Efetov, Ph.D. Thesis, Columbia University 2014
P.R. Wallace, Phys. Rev. 71, 622 (1947)
G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)
B.M. Ludbrook, G. Levy, P. Nigge et al., Proc. Natl. Acad. Sci. 112, 11795 (2015)
H. Fröhlich, Proc. R. Soc. Lond. A 215, 291 (1952)
M.P. Allan, M.H. Fischer, O. Ostojic, A. Andringa, SciPost Phys. 3, 010 (2017)
F.Z. Bloch, Z. Phys. 52, 555 (1928)
K.A. Szewczyk, M.W. Jarosik, A.P. Durajski, R. Szczęśniak, Phys. B Condens. Matter 600, 412613 (2021)
R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules
K.A. Krok, M.M. Adamczyk, A.P. Durajski, R. Szczęśniak, Phys. Rev. B 108, 054512 (2023)
J.G. Bednorz, K.A. Müller, Rev. Mod. Phys. 60, 585 (1988)
P. Morel, P.W. Anderson, Phys. Rev. 125, 1263 (1963)
K.H. Bennemann, J.W. Garland, in: Superconductivity in d- and f-Band Metals, Ed. D.H. Doughlas, AIP, New York 1972
D. Szczęśniak, R. Szczęśniak, Phys. Rev. B 99, 224512 (2019)
P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975)
J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)
J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)
J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990)
D. Szczęśniak, A.P. Durajski, R. Szczęśniak, J. Phys. Condens. Matter 26, 255701 (2014)