Accumulation of Electrical Energy in Supramolecular Clathrates Through Quantum Effects
Main Article Content
Abstract
In this study, we discuss the possibility of using supramolecular clathrates as materials that exhibit quantum-dimensional properties capable of providing high-density electrical energy storage. For this purpose, nanoscale structures with supramolecular bonding based on the host-guest principle were formed. The hosts were an expanded GaSe single crystal and a nanoporous SiO2 matrix, and the guest component was an ionic liquid of two different chemical compositions. As a result of studies conducted by the impedance spectroscopy method, manifestations of such effects as quantum tunneling and Coulomb blockade were detected, which made it possible to accumulate an electric charge. A direct proof of this is the measured volt–ampere characteristics, which demonstrate a pronounced hysteresis characteristic for electrochemical current batteries. The obtained result indicates the possibility of creating fundamentally new devices for the accumulation of electrical energy with the quantum nature of the corresponding effects and phenomena.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. Macagnano, J. Avossa, in: Advances in Nanostructured Materials and Nanopatterning Technologies, 2020, p. 297
I.D. Ibrahim, E.R. Sadiku, T. Jamiru, Y. Hamam, Y. Alayli, A.A. Eze, J. King Saud Univ. Sci. 32, 758 (2020)
G. Guan, M.Y. Han, Adv. Sci. 6, 1901837 (2019)
V. Maksymych, M. Klapchuk, A. Borysiuk, Y. Kulyk, V. Stadnyk, I. Bordun, Z. Kohut, F. Ivashchyshyn, Mater. Res. Bull. 163, 112220 (2023)
A.M. Ilyanok, US Patent no. US6570224B1, 2003
A.M. Ilyanok, European Patent no. EP1414078A1, 2003
A.W. Hübler, O. Osuagwu, Complexity 15, 48 (2010)
A. Hubler, S. Foreman, J. Liu, L. Wortsmann, J. Appl. Phys. 123, 103302 (2018)
S. Shapoval, N. Spodyniuk, V. Zhelykh, V. Shepitchak, P. Shapoval, Pollack Periodica 16, 132 (2021)
V. Zhelykh, P. Shapoval, S. Shapoval, M. Kasynets, in: Int. Scientific Conf. EcoComfort and Current Issues of Civil Engineering, Springer, Cham 2020, p. 499
R. Schlesinger, F. Bianchi, S. Blumstengel et al., Nat. Commun. 6, 6754 (2015)
W.-Q. Kan, J. Yang, Y.-Y. Liu, J.-F. Ma, Inorg. Chem. 51, 11266 (2012)
L. Dobrzycki, K. Woźniak, J. Mol. Struct. 921, 18 (2009)
P. Chabecki, D. Całus, F. Ivashchyshyn, A. Pidluzhna, O. Hryhorchak, I. Bordun, O. Makarchuk, A.V. Kityk, Energies 13, 4321 (2020)
F. Ivashchyshyn, A. Pidluzhna, D. Całus, O. Hryhorchak, P. Chabecki, O. Makarchuk, Bull. Pol. Acad. Sci. Tech. Sci. 69, e136726 (2021)
V. Maksymych, D. Calus, B. Seredyuk, G. Baryshnikov, R. Galagan, V. Litvin, S. Bujnowski, P. Domanowski, P. Chabecki, F. Ivashchyshyn, Sensors 23, 4161 (2023)
F.O. Ivashchyshyn, I.I. Grygorchak, M.I. Klapchuk, Nanosist. Nanomat. Nanotehn. 13, 403 (2015)
V. Maksymych, D. Całus, F. Ivashchyshyn, A. Pidluzhna, P. Chabecki, R. Shvets, Appl. Nanosci. 12, 1147 (2022)
P. Chabecki, Energies 15, 6069 (2022)