Modeling and Simulation of the Influence of Dielectric Cavity on the HVDC Transmission Cable
Main Article Content
Abstract
Partial discharge is one such phenomenon that can be monitored to assess the quality of insulation. However, this phenomenon is quite intricate and requires an understanding of various concurrent processes. This paper aims to analyze the behavior of the cable for the transport of direct current at high voltage. At the fundamental level, partial discharge is a localized breakdown that occurs without complete bridging of the insulation. The essential electrical properties that influence the optimal operation of high-voltage direct current cables are studied and analyzed numerically. The distribution of potential and electric field are determined by solving the Poisson equation using the finite difference method. The results of the numerical simulation for the different parts of the cable in the presence of partial discharges are presented and interpreted. Some aspects of this effect require further investigations in order to validate a realistic mathematical model of the physical phenomena as an essential step towards the accurate numerical simulation of the cable life approximation process.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M.H. Rashid, Power Electronics Handbook 4th ed., Elsevier, Butterworth--Heinemann, 2018, p. 575
H. Ghorbani, M. Jeroense, C.-O. Olsson, M. Saltzer, IEEE Trans. Power Deliv. 29, 414 (2014)
Y. Späck-Leigsnering, G. Ruppert, E. Gjonaj, H. De Gersem, M. Koch, Energies 14, 2848 (2021)
S.J. Frobin, C.F. Niedik, C. Freye, F. Jenau, D. Häring, G. Schröder, in: 2018 IEEE 2nd Int. Conf. on dielectrics (ICD), 2018
H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj, Int. J. Electr. Comput. Eng. 9, 627 (2015)
A.S. Bhangaonkar, S.V. Kulkarni, in: 2008 IEEE Int. Power Modulators and High-Voltage Conf., 2008, p. 572
J. Wang, R. Guo, A. Ping, T. Liu, S. Han, Q. Li, High Volt. 7, 439 (2022)
E. Ouatah, S. Megherfi, K. Haroun, Y. Zebboudj, Electr. Power Syst. Res. 99, 38 (2013)
J.M. Rodríguez-Serna, R. Albarracíin-Sánchez, A.A. Mas'ud, High Volt. 5, 556 (2020)
N. Oussalah, Y. Zebboudj, S.A. Boggs, IEEE Trans. Dielectr. Electr. Insul. 14, 1264 (2007)
D. Pommerenke, R. Jobava, R. Heinrich, IEEE Electr. Insul. Mag. 18, 6 (2002)
A. Toureille, J.-P. Reboul, P. Merle, Phys. III France 1, 111 (1991)
H. Nouri, H. Ait Said, Y. Zebboudj, N. Zouzou, L. Dascalescu, IEEE Trans. Dielectr. Electr. Insul. 23, 665 (2016)
H. Nouri, M. Aissou, H. Ait Said, Y. Zebboudj, Int. J. Numer. Modell. 28, 138 (2015)
L.M. Dumitran, L. Dascalescu, P. Nothinger, P. Atten, J. Electrostat. 65, 758 (2007)
M.S. Mokrov, Y.P. Raizer, Plasma Phys. Rep. 47, 568 (2021)
K. Adamiak, P. Atten, J. Electrostat. 61, 85 (2004)
H. Nouri, Y. Zebboudj, Eur. Phys. J. Appl. Phys. 49, 11001 (2010)
W. Deutsh, Ann. Phys. 373, 335 (1922)
N.A. Kaptzov, Elekricheskie Invlentia v Gazakh i Vakuumme, OGIZ, Moscow 1947, p. 587
V.I. Popkov, Elektrichestvo 1, 33 (1949)
M.P. Sarma, W. Janischewskyj, IEEE Trans. Power App. System 88, 718 (1969)
J.M. Townsend, Electricity in Gases, Oxford University Press, 1914
L.A. Dissado, J.C. Fothergill, IEEE Materials and Devices Series 9, Peter Peregrinus, London 1992
A. Küchler, High Voltage Engineering, Fundamentals — Technology — Applications, 1st ed., VDI-Buch, Springer-Verlag, Berlin 2018 p. 249
F. Gutfleisch, L. Niemeyer, IEEE Trans. Dielectr. Electr. Insul. 2, 729 (1995)
J. Sun, S. Pan, J. Deng, J. Phys. Conf. Ser. 2195, 012024 (2022)
E. Kuffel, W.S. Zaengl, J. Kuffel, High Voltage Engineering Fundamentals, 2nd ed., Butterworth-Heinemann, 2000 p. 395
A. Bossavit, C. Emson, D. Mayergoyz, Méthodes Numériques en Électromagnétisme, Eyrolles, Paris 1991
H.J. Lee, W.E. Schiesser, Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple and Matlab, Chapman & Hall/CRC Press Company, 2004, p. 20