Electric Field Enhancement in Tip-Enhanced Raman Spectroscopy by Biocompatible Materials Coating on Substrate
Main Article Content
Abstract
In this article, tip-enhanced Raman spectroscopy is investigated as a precise method for the analysis of biological samples. Using the finite difference time domain, simulation is carried out to design the required structures for the study of these samples. At first, by comparing different tip-enhanced Raman spectroscopy structures and considering the material, dimensions, and other parameters in the simulation, the ideal structure is introduced from a physical point of view and considering the electric field enhancement. In the following, taking into account the effect of environmental and chemical reactions during testing on biological samples, biocompatible materials are used as substrate coating in the simulation. The impact of using these materials is investigated in comparison with the previous conditions. After performing the simulations, we concluded that Au, Cu, and Ag have the highest electric field enhancement, i.e., the presence of Au next to Cu and Au and Cu next to Ag leads to the enhancement of their electric field. In the following, we found that the material and thickness of the layer under the coating in the substrate and tip greatly influence the enhancement. Finally, we used five biocompatible materials as a coating when using the Au tip and substrate, which creates the greatest electric field enhancement. We saw that the use of biocompatible materials significantly reduces the enhancement, and the effects of the use of these five materials do not differ so much. In summary, using a 1 nm layer of biocompatible coating creates a much more favorable effect on enhancement than larger thicknesses.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Y. Cao, M. Sun, Rev. Phys. 8, 100067 (2022)
C.V. Raman, K.S. Krishnan, Nature 121, 501 (1928)
H. Khoshroo, H. Khadem, M. Bahreini, S. Tavassoli, J. Hadian, Appl. Opt. 54, 9533 (2015)
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)
S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014)
Z. Zhang, S. Sheng, R. Wang, M. Sun, Anal. Chem. 88, 9328 (2016)
J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985)
P. Verma, Chem. Rev. 117, 6447 (2017)
J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, M. Sun, Rev. Phys. 4, 100026 (2019)
J. Ma, Y. Cheng, M. Sun, Nanoscale 13, 10712 (2021)
Z. Zhang, P. Xu, X. Yang, W. Liang, M. Sun, J. Photochem. Photobiol. C 27, 100 (2016)
J. Ma, J. Song, Y. Cheng, M. Sun, J. Raman Spectrosc. 52, 1685 (2021)
S. Hagness, S. Ho, A. Taflove, in: Computational Electromagnetics and Its Applications, Eds. T.G. Campbell, R.A. Nicolaides, M.D. Salas, Springer, Dordrecht (Netherlands) 1997, p. 229
B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)
D.B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, Cambridge 2010
J.M. Jarem, P.P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, CRC Press, 2016
B. Engquist, A. Majda, Proc. Natl. Acad. Sci. 74, 1765 (1977)
J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, 2021
Z. Yang, J. Aizpurua, H. Xu, J. Raman Spectrosc. 40, 1343 (2009)
J. Stadler, B. Oswald, T. Schmid, R. Zenobi, J. Raman Spectrosc. 44, 227 (2013)
N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet, Opt. Express 21, 25271 (2013)
L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, B. Ren, Opt. Express 23, 13804 (2015)
M.K. Jahromi, R. Ghayour, Z. Adelpour, Opt. Quant. Electron. 53, 385 (2021)
X. You, C.B. Casper, E.E. Lentz, D.A. Erie, J.M. Atkin, ChemPhysChem 21, 188 (2020)
M. Bahreini, A. Hosseinzadegan, A. Rashidi, S.R. Miri, H.R. Mirzaei, P. Hajian, Talanta 204, 826 (2019)
H. Chen, L. Yuan, W. Song, Z. Wu, D. Li, Prog. Polym. Sci. 33, 1059 (2008)
J. Schubert, M. Chanana, Curr. Med. Chem. 25, 4553 (2018)
J.D. Jackson, R.D. Fox, Classical Electrodynamics, John Wiley & Sons, 1999
L. Li, K. Liu, B. Suen, Q. Liu, A. King, F.E. Talke, Tribol. Lett. 66, 26 (2018)
S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007
B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today 15, 16 (2012)
S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)
N. Anderson, A. Hartschuh, L. Novotny, Mater. Today 8, 50 (2005)
T.-X. Huang, S.-C. Huang, M.-H. Li, Z.-C. Zeng, X. Wang, B. Ren, Anal. Bioanal. Chem. 407, 8177 (2015)
Y. Liu, X. Li, H. Wu, Z. Zeng, D. Zhang, P. Wang, L. Zhang Y. Fang, Plasmonics 12, 1861 (2017)
Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki, S. Kawata, Appl. Phys. Lett. 88, 143109 (2006)
S. Seweryn, K. Skirlińska-Nosek, K. Sofińska, K. Szajna, J. Kobierski, K. Awsiuk, M. Szymoński, E. Lipiec, Spectrochim. Acta A 281, 121595 (2022)
V. Giliberti, R. Polito, E. Ritter et al., Nano Lett. 19, 3104 (2019)
M. Bahreini, AIP Conf. Proc. 1920, 020013 (2018)
M. Bahreini, A. Noori, S.H. Aref, J. Res. Many-body Syst. 12, 37 (2022)
X. Tan, Z. Wang, J. Yang, C. Song, R. Zhang, Y. Cui, Nanotechnology 20, 445102 (2009)