Stability of Optical Solitons in Parity–Time-Symmetric Potentials with Competition Nonlinearity

Main Article Content

C. Huang

Abstract

This study investigates the existence, stability, and propagation of fundamental, dipole, and tripole modes in parity–time symmetric potentials with competing cubic and quintic nonlinearities. We discuss such parity–time solitons in the presence of a focusing quintic nonlinearity and a defocusing cubic nonlinearity. Assuming a fixed quintic nonlinearity coefficient σ2 of 1, these solitons can exist and remain stable within a suitable power range. Fundamental solitons can remain stable even for lower values of σ1, while dipole and tripole solitons may only be stable for larger values of σ1. By employing appropriate parameters, a significant proportion of solitons can be stabilized. The stability and propagation of the solitons are demonstrated through linear stability analysis and direct numerical simulations.

Article Details

How to Cite
[1]
C. Huang, “Stability of Optical Solitons in Parity–Time-Symmetric Potentials with Competition Nonlinearity”, Acta Phys. Pol. A, vol. 146, no. 1, p. 87, Jul. 2024, doi: 10.12693/APhysPolA.146.87.
Section
Regular segment

References

C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)

Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, J. Phys. A Math. Theor. 41, 244019 (2008)

C. Huang, J. Zeng, Opt. Laser Technol. 88, 104 (2017)

X. Li, L. Wang, Z. Zhou, Y. Chen, Z. Yan, Nonlinear Dyn. 108, 4045 (2022)

N. Ghosh, A. Das, D. Nath, Nonlinear Dyn. 111, 1589 (2023)

L. Dong, L. Gu, D. Guo, Phys. Rev. A 91, 053827 (2015)

P. Li, C. Dai, R. Li, Y. Gao, Opt. Exp. 26, 6949 (2018)

T.D. Haji, T.M. Solaimani, M. Ghalandari, B. Babayar-Razlighi, Phys. Scr. 96, 125531 (2021)

X. Zhu, W. Che, Z. Wu, J. Xie, Y. He, J. Opt. 22, 035503 (2020)

X. Zhu, X. Peng, Y. Qiu, H. Wang, Y. He, New. J. Phys. 22, 033035 (2020)

Z. Shi, H. Li, X. Zhu, X. Jiang, Europhys. Lett. 98, 64006 (2012)

J. Huang, Y. Weng, H. Wang, Opt. Exp. 26, 11667 (2018)

J. Yang, Phys. Rev. E 98, 042202 (2018)

P.J. Chen, H. Wang, Opt. Exp. 31, 30529 (2023)

L. Qin, C. Hang, Z.Y. Shi et al., Opt. Exp. 31, 11116 (2023)

S. Bhatia, A. Goyal, S. Jana, C.N. Kumar, Phys. Lett. A 469, 128751 (2023)

W.B. Bo, R.R. Wang, W. Liu, Y.Y. Wang, Chaos 32, 093104 (2022)

M. Bagci, Phys. Rev. A 103, 023530 (2021)

E. Luz, V. Lutsky, E. Granot, B.A. Malomed, Sci. Rep. 9, 4483 (2019)

M. Ögren, F.K. Abdullaev, V.V. Konotop, Opt. Lett. 42, 4079 (2017)

Y. Zhong, H. Triki, Q. Zhou, Nonlinear Dyn. 112, 1349 (2024)

B.A. Malomed, D. Mihalache, Rom. J. Phys. 64, 106 (2019)

V. Skarka, N.B. Aleksic, Acta Phys. Pol. A 112, 791 (2007)

C. Zhan, D. Zhang, D. Zhu et al., J. Opt. Soc. Am. B 19, 369 (2002)

E.L. Falcao-Filho, C.B. de Araujo, J.J. Rodrigues Jr., J. Opt. Soc. Am. B 24, 2948 (2007)

K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Opt. Lett. 29, 265 (2004)

B. Gu, Y. Wang, W. Ji, J. Wang, Appl. Phys. Lett. 95, 041114 (2009)

P. Li, L. Li, D. Mihalache, Rom. Rep. Phys. 70, 408 (2018)

G. İzzet, A. Nalan, B. İlkay, Opt. Commun. 354, 277 (2015)

X. Zhu, Z. Cai, J. Liu, S. Liao, Y. He, Nonlinear Dyn. 108, 2563 (2022)

N.T. Nkouessi, G.C. Tiofack Latchio, A. Mohamadou, Eur. Phys. J. D 74, 32 (2020)

L. Zeng, J. Zeng, Nonlinear Dyn. 98, 985 (2019)

L. Zeng, D. Mihalache, B.A. Malomed, X. Lu, Y. Cai, Q. Zhu, J. Li, Chaos Solitons Fract. 144, 110589 (2021)

L. Ge, M. Shen, T. Zang, C. Ma, L. Dai, Phys. Rev. E 91, 023203 (2015)

J. Yang, T.I. Lakoba, Stud. Appl. Math. 118, 153 (2007)

J. Yang, J. Comput. Phys. 227, 6862 (2008)

N. Vakhitov, A. Kolokolov, Radiophys. Quantum Electron. 16, 783 (1973)

L. Berge, Phys. Rep. 303, 259 (1998)

H. Sakaguchi, B.A. Malomed, Phys. Rev. A 81, 013624 (2010)