Indication of High-Energy Leptons (e+/e-) Originating from the DD Fusion Reaction at Very Low Energy

Main Article Content

R. Dubey
K. Czerski
H. Gokul Das
A. Kowalska
N. Targosz-Sleczka
M. Kaczmarski
M. Valat

Abstract

Following the preliminary indications of electron/positron (e+/e-) pair production reported in the deuteron–deuteron reaction, which supported the existence of a single-particle threshold resonance in 4He, a series of experiments have been conducted over the past two years at the eLBRUS Ultra High Vacuum Accelerator Facility at the University of Szczecin, Poland. During certain stages of these experiments, a simple detection system, including silicon (Si) detectors of varying thicknesses and different aluminum (Al) absorption foils placed in front of the detectors, was employed. In addition  to  Si charged particle detectors, a high-purity germanium detector was used to investigate the effect of internal pair e+/e-creation originating from deuteron–deuteron reactions and to determine the branching ratio between emitted protons, neutrons, and e+/e- pairs at 12 keV deuteron energies. The measured electron energy spectrum and the electron–proton branching ratio agree with Geant4 Monte Carlo simulations and our theoretical expectations for an electron–positron pair creation decay from the deuteron–deuteron 0+ threshold resonance to the ground state. Furthermore, according to theoretical predictions, an increase in the electron–proton branching ratio with decreasing deuteron energies could make the electron channel the most dominant at thermal energies, potentially leading to a future fusion energy source based on high-energy electrons.

Article Details

How to Cite
[1]
R. Dubey, “Indication of High-Energy Leptons (e+/e-) Originating from the DD Fusion Reaction at Very Low Energy”, Acta Phys. Pol. A, vol. 146, no. 5, p. 716, Dec. 2024, doi: 10.12693/APhysPolA.146.716.
Section
Special segment

References

W.A. Fowler, Rev. Mod. Phys. 56, 149 (1984)

C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos, University of Chicago Press, Chicago 1988

S. Ichimaru, H. Kitamura, Phys. Plasmas 6, 2649 (1999)

K. Czerski, D. Weissbach, A.I. Kilic, G. Ruprecht, A. Huke, M. Kaczmarski, N. Targosz-Ślęczka, K. Maass, Europhys. Lett. 113, 22001 (2016)

K. Czerski, R. Dubey, M. Kaczmarski, A. Kowalska, N. Targosz-Ślęczka, G. Das Haridas, M. Valat, Phys. Rev. C 109, L021601 (2024)

K. Czerski, Phys. Rev. C 106, L011601 (2022)

R. Dubey, K. Czerski, H. Gokul Das, A. Kowalska, N. Targosz-Ślęczka, M. Kaczmarski, M. Valat, arXiv:2408.07567, under review for publication in Nat. Commun., 2024

S. Kegel, P. Achenbach, S. Bacca et al., Phys. Rev. Lett. 130, 152502 (2023)

N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. Lett. 131, 242502 (2023)

S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Method A 506, 186 (2003)

H. Gokul Das, R. Dubey, K. Czerski, M. Kaczmarski, A. Kowalska, N. Targosz-Ślęczka, M. Valat, Measurement 228, 114392 (2024)

M. Kaczmarski, A.I. Kilic, K. Czerski et al., Acta Phys. Pol. B 45, 509 (2014)

A. Kowalska, K. Czerski, P. Horodek et al., Materials 16, 6255 (2023)

R. Dubey, K. Czerski, H. Gokul Das, M. Kaczmarski, A. Kowalska, N. Targosz-Ślęczka, M. Valat, Acta Phys. Pol. B 17, 3-A35 (2024)

CleanHME Report, Private communication

C. Iliadis, Nuclear Physics of Stars, Wiley, Berlin 2015, Ch. 4, p. 323