Structure and Magnetic Properties of the Magnetocaloric MnCoGe Modified by W
Main Article Content
Abstract
The investigation of the nonmagnetic W-substitution effect on the structure and magnetocaloric properties of the MnCoGe alloy was conducted. The analysis of phase composition revealed the coexistence of a hexagonal Ni2In-type phase and an orthorhombic TiNiSi-type phase. A detailed analysis of XRD patterns supported by Rietveld analysis showed changes in the lattice constants and the content of recognized phases, which depended on the W content in the alloy. A monotonic decrease in the Curie temperature with an increase in W content in the alloy composition was noticed. The values of ΔSM measured for the variation of the external magnetic field ~5 T were equal to 5.30, 4.16, 2.32, and 3.01 for Mn0.97W0.03CoGe, Mn0.95W0.05CoGe, Mn0.93W0.07CoGe, and Mn0.9W0.1CoGe alloy, respectively. The analysis of n vs T curves recovered for the tested alloys was characteristic of second-order phase transition.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
E. Warburg, Ann. Phys. 13, 141 (1881)
P. Debye, Ann. Phys. 81, 1154 (1926)
W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927)
V.K. Pecharsky, K.A. Gschneidner, Jr, Phys. Rev. Lett. 78, 4494 (1997)
G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, J.L. Chen, W.H. Wang, H.W. Zhang, G.H. Wu, S.Y. Yu, J. Magn. Magn. Mater. 332, 146 (2013)
S. Lin, O. Tegus, E. Brück, W. Dagula, T. Gortenmulder, K. Buschow, IEEE Trans. Magn. 42, 3776 (2006)
K. Kutynia, P. Gębara, Materials 14, 3129 (2021)
K. Kutynia, A. Przybył, P. Gębara, Materials 16, 539 (2023)
P. Gębara, K. Kutynia, Acta Phys. Pol. A 135, 298 (2019)
W. Kraus, G. Nolze, Powder Differ 13, 256 (1998)
W. Bażela, A. Szytuła, J. Todorović, Z. Tomkowicz, A. Zięba, Phys. Status Solidi A 38, 721 (1976)
V.K. Pecharsky, K.A. Gschneider, Jr., J. Appl. Phys. 86, 565 (1999)
J. Świerczek, J. Magn. Magn. Mater. 322, 2696 (2010)
M.E. Wood, W.H. Potter, Cryogenics 25, 667 (1985)
A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Application, Institute of Physics Series in Condensed Matter Physics, 2003}
S.K. Tripathy, K.G. Suresh, A.K. Nigam, J. Magn. Magn. Mater. 306, 24 (2006)
R.R. Wu, L.F. Bao, F.X. Hu et al., Sci. Rep. 5, 18027 (2015)
P. Gębara, M. Hasiak, Materials 14, 185 (2021)
A.O. Pecharsky, K.A. Gschneidner, V.K. Pecharsky, J. Appl. Phys. 93, 4722 (2003)
J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, Nat. Commun. 9, 2680 (2018)
V. Franco, A. Conde, V. Provenzano, R. Shull, J. Magn. Magn. Mater. 322, 218 (2010)
J. Świerczek, Phys. Status Solidi A 211, 1567 (2014)
K. Morrison, K.G. Sandeman, L.F. Cohen, C.P. Sasso, V. Basso, A. Barcza, M. Katter, J.D. Moore, K.P. Skokov, O. Gutfleisch, Int. J. Refrig. 35, 1528 (2012)
G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, J.L. Chen, W.H. Wang, H.W. Zhang, G.H. Wu, S.Y. Yu, J. Magn. Magn. Mater. 332, 146 (2013)