Two-Photon Decay of Para-Positronium Within a Composite Approach

Main Article Content

M. Piotrowska
F. Giacosa

Abstract

The decay of the para-positronium into two photons is studied in the framework of a composite quantum field theoretical approach. This amounts to the evaluation of the electron–positron dressing, the Weinberg compositeness condition for the positronium, and the triangle-shaped diagram with virtual electrons circulating in it, leading to the final two-photon state. An important role is played by the positronium–electron–positron vertex, which is linked to the wave function of the para-positronium. We show how possible choices for the vertex function affect the γγ decay rate. Outlooks to other decay channels and other positronia are presented.

Article Details

How to Cite
[1]
M. Piotrowska and F. Giacosa, “Two-Photon Decay of Para-Positronium Within a Composite Approach”, Acta Phys. Pol. A, vol. 146, no. 5, p. 699, Dec. 2024, doi: 10.12693/APhysPolA.146.699.
Section
Special segment

References

G.S. Adkins, D.B. Cassidy, J. Pérez-Ríos, Phys. Rep. 975, 1 (2022)

S.D. Bass, Acta Phys. Pol. B 50, 1319 (2019)

S.D. Bass, S. Mariazzi, P. Moskal, E. Stepien, Rev. Mod. Phys. 95, 021002 (2023)

P. Moskal, B. Jasinska, E.Ł. Stępień, S.D. Bass, Nat. Rev. Phys. 1, 527 (2019)

M.D. Harpen, Med. Phys. 31, 57 (2004)

P. Moskal, K. Dulski, N. Chug et al., Sci. Adv. 7, eabh4394 (2021)

P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, eadp2840 (2024)

A. Sen, Z.K. Silagadze, Can. J. Phys. 97, 693 (2019)

J.A. Wheeler, Ann. N.Y. Acad. Sci. 48, 219 (1946)

J. Pirenne, Arch. Sci. Phys. Nat. 29, 265 (1947)

I. Harris, L.M. Brown, Phys. Rev. 105, 1656 (1957)

G.S. Adkins, N.M. McGovern, R.N. Fell, J. Sapirstein, Phys. Rev. A 68, 032512 (2003)

A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys. Rev. A 61, 052502 (2000)

B.A. Kniehl, A. A. Penin, Phys. Rev. Lett. 85, 1210 (2000)

S. Abreu, M. Becchetti, C. Duhr M.A. Ozcelik, JHEP 09, 194 (2022)

A.H. Al-Ramadhan, D. Gidley, Phys. Rev. Lett. 72, 1632 (1994)

S. Weinberg, Phys. Rev. 130, 776 (1963)

K. Hayashi, M. Hirayama, T. Muta, N. Seto, T. Shirafuji, Fortsch. Phys. 15, 625 (1967)

A. Faessler, T. Gutsche, M.A. Ivanov, V.E. Lyubovitskij, P. Wang, Phys. Rev. D 68, 014011 (2003)

F. Giacosa, T. Gutsche, A. Faessler, Phys. Rev. C 71, 025202 (2005)

F. Giacosa, T. Gutsche, V. E. Lyubovitskij, Phys. Rev. D 77, 034007 (2008)

M. Piotrowska, F. Giacosa, Acta Phys. Pol. B Supp. 17, 1-A7 (2024)

J. Pestieau, C. Smith, S. Trine, Int. J. Mod. Phys. A 17, 1355 (2002)

T. Wolkanowski, M. Sołtysiak, F. Giacosa, Nucl. Phys. B 909, 418 (2016)

M. Soltysiak, F. Giacosa, Acta Phys. Pol. B Supp. 9, 467 (2016)

C. Smith, Int. J. Mod. Phys. A 19, 3905 (2004)

D. Gromes, Z. Phys. C 57, 631 (1993)

Z.P. Li, F.E. Close, T. Barnes, Phys. Rev. D 43, 2161 (1991)