Study of Stability Diagrams of Codoped Silicon Nano-Transistors

Main Article Content

R. Asai
S. Masui
R.S. Străteanu
S. Miyagawa
D. Moraru

Abstract

This study provides insights into the behavior of nanoscale silicon-on-insulator transistor with codoped channels, in particular at low temperatures. The goal is to compare the stability diagrams (plots of current as a function of gate voltage and source-drain bias) for several devices fabricated in the same batch, but having different designed channel widths. For the narrower device, a simple stability diagram containing a small number of Coulomb diamonds is observed, while for the wider device, a relatively more complex set of overlapped Coulomb diamonds indicates the presence of a larger number of quantum dots. Here, it is also shown how applying a vertical electric field by using the substrate voltage can significantly change the current paths in such devices. 


 

Article Details

How to Cite
[1]
R. Asai, S. Masui, R. Străteanu, S. Miyagawa, and D. Moraru, “Study of Stability Diagrams of Codoped Silicon Nano-Transistors”, Acta Phys. Pol. A, vol. 146, no. 4, p. 655, Nov. 2024, doi: 10.12693/APhysPolA.146.655.
Section
Special segment

References

G. Moore, Electronics Mag. 38, 114 (1965)

A. Asenov, A.R. Brown, J.H. Davies, S. Kaya, G. Slavcheva, IEEE Trans. Electron Devices 50, 1837 (1998)

T. Skotnicki, J.A. Hutchby, T.-J. King, H.-S.P. Wong, F. Boeuf, IEEE Circuits Devices Mag. 21, 16 (2005)

International Technology Roadmap for Semiconductors (ITRS), 2013

T. Shinada, S. Okamoto, T. Kobayashi, I. Ohdomari, Nature 437, 1128 (2005)

M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warchkow, L.C.L. Hollenberg, G. Klimeck, M.Y. Simmons, Nat. Nanotechnol. 7, 242 (2012)

B. Weber, Y.H.M. Tan, S. Mahapatra, T.F. Watson, H. Ryu, R. Rahman, L.C.L. Hollenberg, G. Klimeck, M.Y. Simmons, Nat. Nanotechnol. 9, 430 (2014)

H. Sellier, G.P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, S. Biesemans, Phys. Rev. Lett. 97, 206805 (2006)

Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, Y. Takahashi, Appl. Phys. Lett. 90, 102106 (2007)

P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91 (2011)

J.P. Colinge, C.W. Lee, A. Afzalian et al., Nature Nanotechnol. 5, 225 (2010)

J.P. Colinge, C.W. Lee, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu, in: Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Eds. A. Nazarov, J.P. Colinge, F. Balestra, J.P. Raskin, F. Gamiz, V. Lysenko, Springer, Berlin 2011

M. Tabe, D. Moraru, M. Ligowski, M. Anwar, R. Jablonski, Y. Ono, T. Mizuno, Phys. Rev. Lett. 105, 016803 (2010)

A. Udhiarto, D. Moraru, T. Mizuno, M. Tabe, Appl. Phys. Lett. 99, 113108 (2011)

E. Hamid, D. Moraru, Y. Kuzuya, T. Mizuno, L.T. Anh, H. Mizuta, M. Tabe, Phys. Rev. B 87, 085420 (2013)

D. Moraru, A. Samanta, L.T. Anh, T. Mizuno, H. Mizuta, M. Tabe, Sci. Rep. 4, 6219 (2014)

A. Samanta, D. Moraru, T. Mizuno, M. Tabe, Sci. Rep. 5, 17377 (2015)

A. Samanta, M. Muruganathan, M. Hori, Y. Ono, H. Mizuta, M. Tabe, D. Moraru, Appl. Phys. Lett. 110, 093107 (2017)

T.T. Jupalli, A. Debnath, G. Prabhudesai, K. Yamaguchi, P.J. Kumar, Y. Ono, D. Moraru, Appl. Phys. Express 15, 065003 (2022)

D. Moraru, T. Kaneko, Y. Tamura, T.T. Jupalli, R.S. Singh, C. Pandy, L. Popa, F. Iacomi, Nanomaterials 13, 1911 (2023)

C. Pandy, G. Prabhudesai, K. Yamaguchi, V.N. Ramakrishnan, Y. Neo, H. Mimura, D. Moraru, Appl. Phys. Express 14, 055002 (2021)