Comparison of Rayleigh Model and Steinmetz Law in Evaluation of Hysteresis Losses in Low Magnetizing Fields

Main Article Content

M. Kachniarz

Abstract

The purpose of the following paper is to compare the applicability of Rayleigh hysteresis model and Steinmetz law in the evaluation of power losses of selected soft magnetic materials under the influence of low magnetizing fields. Both approximations are relatively simple in terms of computational complexity, thus they seem to be appropriate for technical applications that do not require extensive knowledge of the physical properties of the material. The selected soft magnetic materials, i.e., steels and ferrites, in the form of toroidal cores, were investigated in low magnetizing fields with a computer-controlled hysteresisgraph system. Both considered models were applied to the obtained power loss characteristics. The quality of the description provided by each model was compared in terms of root-mean-square deviation and determination coefficient R2, which allowed us to choose the more suitable approximation.

Article Details

How to Cite
[1]
M. Kachniarz, “Comparison of Rayleigh Model and Steinmetz Law in Evaluation of Hysteresis Losses in Low Magnetizing Fields”, Acta Phys. Pol. A, vol. 146, no. 1, p. 64, Jul. 2024, doi: 10.12693/APhysPolA.146.64.
Section
Special segment

References

R. Hasegawa, D. Azuma, J. Magn. Magn. Mater. 320, 2451 (2008)

F. Liorzou, B. Phelps, D.L. Atherton, IEEE Trans. Magn. 36, 418 (2000)

R.H. Pry, C.P. Bean, J. Appl. Phys. 29, 532 (1958)

T. Matsuo, M. Shimasaki, IEEE Trans. Magn. 42, 919 (2006)

K. Chwastek, A.P.S. Baghel, P. Borowik, B.S. Ram, S.V. Kulkarni, in: 2016 Progress in Applied Electrical Engineering (PAEE), Koscielisko-Zakopane, IEEE, 2026

G. Bertotti, IEEE Trans. Magn. 24, 621 (1988)

G. Bertotti, Hysteresis in Magnetism for Physicists, Materials Scientists, and Engineers, Acad. Press, San Diego 1998

B. Koprivica, K. Chwastek, Acta Phys. Pol. A 136, 709 (2019)

J. Szczygłowski, P. Kopciuszewski, K. Chwastek, M. Najgebauer, W. Wilczyński, Arch. Electr. Eng. 60, 59 (2011)

B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, New York 2009}

W.B. Ellwood, Physics 6, 215 (1935)

Yu.N. Starodubtsev, V.A. Kataev, K.O. Bessonova, V.S. Tsepelev, J. Magn. Magn. Mater. 479, 19 (2019)

D.C. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hall, London 1998

Yu.F. Ponomarev, Phys. Met. Metallogr. 104, 469 (2007)

J. Kováč, B. Kunca, L. Novák, J. Magn. Magn. Mater. 502, 166555 (2020)

Lord Rayleigh, Philos. Mag. 23, 225 (1887)

C.P. Steinmetz, Trans. AIEE IX, 1 (1892)

F.J.G. Landgraf, M. Emura, M.F. de Campos, J. Magn. Magn. Mater. 320, e531 (2008)

D. Gzieł, M. Najgebauer, Przegląd Elektrotechniczny 97, 238 (2020)

M. Najgebauer, Acta Phys. Pol. A 131, 1225 (2017)

M. Najgebauer, in: 2019 Progress in Applied Electrical Engineering (PAEE), Koscielisko-Zakopane, IEEE, 2019

M. Kachniarz, R. Szewczyk, J. Electr. Eng. 66, 82 (2015)

M. Kachniarz, K. Kołakowska J. Salach, R. Szewczyk, P. Nowak Acta Phys. Pol. A 133, 660 (2018)

P. Jabłoński, M. Najgebauer, M. Bereźnicki, Energies 15, 2869 (2022)

M. Kachniarz, R. Szewczyk, Acta Phys. Pol. A 131, 1244 (2017)

G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning, Springer, New York 2013