Modeling the Anhysteretic Magnetization Curve of Anisotropic Soft Magnetic Materials

Main Article Content

R. Szewczyk

Abstract

The paper presents the results of validating the model of anhysteretic magnetization curve of anisotropic soft magnetic materials utilizing the Boltzmann distribution of magnetic domain directions. It was confirmed that the editorial mistake in the original paper presenting the concept of anisotropic anhysteretic magnetization curve was reproduced in subsequent publications. Validation presented in the paper covers an anhysteretic magnetization curve model for magnetic materials with axial anisotropy and anisotropic grain-oriented electrical steels. However, the proposed correction of the model of the anisotropic anhysteretic magnetization curve can be extended to other types of anisotropy. 

Article Details

How to Cite
[1]
R. Szewczyk, “Modeling the Anhysteretic Magnetization Curve of Anisotropic Soft Magnetic Materials”, Acta Phys. Pol. A, vol. 146, no. 1, p. 48, Jul. 2024, doi: 10.12693/APhysPolA.146.48.
Section
Special segment

References

D.C. Jiles, D.L. Atherton, J. Appl. Phys. 55, 2115 (1984)

D.C. Jiles, D.L. Atherton, J. Magn. Magn. Mater. 61, 48 (1986)

R. Szewczyk, M. Nowicki, O. Petruk et al., J. Magn. Magn. Mater. 555, 169376 (2022)

M. Nowicki, Materials 11, 2021 (2018)

A. Ramesh, D.C. Jiles, Y. Bi., J. Appl. Phys. 81, 5585 (1997)

A.P. Baghel, S.V. Kulkarni, J. Appl. Phys. 113, 043908 (2013)

R. Szewczyk, Materials 7, 5109 (2014)

W. Mazgaj, M. Sierzega, Z. Szular, Energies 14, 4110 (2021)

G. Herzer, in: Handbook of Magnetic Materials, Elsevier, 1997

F. Fiorillo, L. Dupré, C. Appino, A.M. Rietto, IEEE Trans. Magn. 38, 1467 (2002)

IEC 60404-2:2008 International Standard, 2018

R. Storn, K. Price, J. Glob. Optim. 11, 341 (1997)

GNU Octave

D. Laurie, Math. Comput. 66, 1133 (1997)

G. Buttino, M. Poppi, J. Magn. Magn. Mater. 170, 211 (1997)

R. Szewczyk, J. Phys. D Appl. Phys. 40, 4109 (2007)