Trajectory Tracking Control of Robot Manipulator Using Hybrid Control Strategy

Main Article Content

A. Teklu
J. Mozaryn

Abstract

This article proposes a linear−quadratic regulator-based optimal second-order sliding mode controller for trajectory tracking control of robot manipulators under lumped disturbance. The coupled dynamics of the manipulator with a geared motor and the desired joint space trajectory are designed and discussed. The linear−quadratic regulator controller is developed by penalizing corresponding weighting matrices for the nominal input−output linearized robot dynamics. An integral sliding mode control law is incorporated to address external disturbances, ensuring the linear−quadratic regulator's optimized performance remains unaffected. A non-singular terminal sliding mode control law is then cascaded with the optimal integral switching manifold to alleviate chattering effects. The proposed strategy, validated using SimMechanicsTM/Simulink in MATLAB®, demonstrates superior performance compared to known control algorithms by achieving joint trajectories with lower torque and smoother control. The validation of the proposed controller is based solely on simulation and has not been implemented practically.  Specifically,  the  energy  consumption  and  tracking  errors of the proposed controller are 27.63 J and 0.00167, respectively.

Article Details

How to Cite
[1]
A. Teklu and J. Mozaryn, “Trajectory Tracking Control of Robot Manipulator Using Hybrid Control Strategy”, Acta Phys. Pol. A, vol. 146, no. 4, p. 430, Nov. 2024, doi: 10.12693/APhysPolA.146.430.
Section
Special segment

References

J. Iqbal, R.U. Islam, S.Z. Abbas, A.A. Khan, S.A. Ajwad, Teh. Vjesn. 23, 917 (2016)

N.M.H. Norsahperi, K.A. Danapalasingam, Int. J. Electr. Comput. Eng. Syst. 10, 73 (2019)

N.M.H. Norsahperi, K.A. Danapalasingam, Mech. Syst. Signal Process. 142, 106747 (2020)

S. Tayebi-Haghighi, F. Piltan, J.-M. Kim, Robotics 7, 13 (2018)

J. Baek, W. Kwon, Appl. Sci. 10, 2909 (2020)

A.Q. Al-Dujaili, A. Falah, A.J. Humaidi, D.A. Pereira, I.K. Ibraheem, Int. J. Adv. Robot. Syst. 17, 1 (2020)

W.M. Elawady, Y. Bouteraa, A. Elmogy, Robotics 9, 1 (2020)

Î.Ö. Bucak, in: Automation and Control, Eds. C. Volosencu, S. Küçük, J. Guerrero, O. Valero, IntechOpen 2021

A. Ferrara, L. Magnani, J. Intell. Robot. Syst. Theory Appl. 48, 23 (2007)

L.M. Capisani, A. Ferrara, L. Magnani, in: Proc. IEEE Conf. Decis. Control, 2007, p. 3691

K. Dumlu, J. Inst. Sci. Technol. 8, 77 (2018)

S. Chanda, P. Gogoi, J. Sci. Eng. Res. 2, 18 (2014)

S. Mondal, Ph.D. Thesis, Indian Institute of Technology Guwahati, 2012

F. Castaños, L. Fridman, IEEE Trans. Automat. Contr. 51, 853 (2006)

N. Mezghani Ben Romdhane, T. Damak in: Studies in Computational Intelligence, Vol. 576, Eds. A. Azar, Q. Zhu, Springer, Cham 2015 p. 327

H.R. Shafei, M. Bahrami, H.A. Talebi, J. Brazilian Soc. Mech. Sci. Eng. 42, 301 (2020)

W. Boukadida, A. Benamor, H. Messaoud, P. Siarry, Aerosp. Sci. Technol. 91, 442 (2019)

H. Pang, X. Yang, J. Appl. Math. 2013, 863168 (2013)