ZnSe Window Thin Films as Candidate for Sb2Se3 Solar Cells
Main Article Content
Abstract
The influence of the technological conditions on the structure of ZnSe thin films deposited by the close-spaced sublimation method onto SnO2/glass and ITO/glass substrates was studied. The manufacturing parameters were optimized by varying substrate temperature. The X-ray diffraction analysis of the ZnSe thin films showed that films deposited at both types of substrates were polycrystalline in nature with zinc-blende structure, and a preferential peak corresponded to (400) plane for SnO2/glass regarding the substrate temperature, while for ITO/glass substrate with increasing substrate temperature, it was changing from (111) to (220). The elemental composition of ZnSe thin films deposited onto SnO2/glass and ITO/glass substrates was confirmed by the energy-dispersive and X-ray photoelectron spectroscopy techniques. Also, ZnSe/Sb2Se3 heterostructures have been fabricated with SnO2/glass and ITO/glass substrates and investigated for their use in photovoltaic applications. This paper also examined how varying the type of transparent electrode used in solar cell fabrication impacts the device's photovoltaic parameters.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Phys. Lett. A 384, 126097 (2020)
C. Mehta, G.S.S. Saini, J. M. Abbas, S.K. Tripathi, Appl. Surf. Sci. 256, 608 (2009)
D. Suthar, G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Mater. Res. Bull. 132, 110982 (2020)
Y.H. Won, O. Cho, T. Kim et al., Nature 575, 634 (2019)
E.R. Sharaf, I.S. Yahia, M.I. Mohammed, H.Y. Zahran, E.R. Shaaban, Phys. B Condensed Matter 602, 412595 (2021)
J. Yi, Y. Yu, J. Shang, X. An, B. Tu, G. Feng, S. Zhou, Opt. Express 24, 5102 (2016)
F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, X. Yang, Chemi. Mater. 30, 8002 (2018)
M. Gao, H. Yang, H. Shen et al., Nano Lett. 21, 7252 (2021)
S. Sagadevan, I. Das, Aust. J. Mech. Eng. 15, 222 (2017)
S. Kumar, F. Fossard, G. Amiri, J.M. Chauveau, V. Sallet, Nanomaterials 12, 2323 (2022)
R. Kowalik, P. Żabiński, K. Fitzner, Electrochim. Acta V 53, 6184 (2008)
Ho Soonmin, Am. Chem. Sci. J. 14, 1 (2016)
S. Li, L. Wang, D. Gao, Y. Pan, X. Han, Thin Solid Films 660, 405 (2018)
S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compd. 685, 733 (2016)
V.S.G. Krishna, S. Bhaskar, M.G. Mahesha, Cogent Eng. 11, 2387260 (2024)
N. Spalatu, D. Serban, T. Potlog, in: CAS 2011 Proc. 2011 Int. Semiconductor Conf., 2011, p. 451
W. Parent, A. Rodriguez, J.E. Ayers, F.C. Jain, Solid-State Electron. 47, 595 (2003)
R.J. Shallenberger, N. Hellgren, Surf. Sci. Spectra 27, 014020 (2020)
C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., 1979
R. Kumari, M. Mamta, R. Kumar, Y. Singh, V.N. Singh, ACS Omega 8, 1632 (2023)