Biosignal-Based Machine Learning Predictors of Sepsis: A Mini-Review

Main Article Content

M. Szumilas

Abstract

This work aims to provide insight into the most recent machine learning approaches to biosignal-based early sepsis prediction in the intensive care unit environment. A systematic search of the PubMed database revealed 29 original research papers. These works present sepsis prognosis and detection models that employ vital signs or densely sampled physiological waveforms (or their derivatives) acquired at the bedside or retrieved from electronic medical records. The papers were reviewed for the methods, predictors, datasets, number of participants, and performance achieved in the test set. Even though the sepsis prediction landscape is dominated by models that employ parameters derived from sparsely sampled biosignals, there are notable approaches built around densely sampled data, which speaks in favor of more synergistic solutions that benefit from both signal types. Given the already good quality of the models demonstrated using offline data, future research should prioritize achieving the promised performance in real-world intensive care unit operating conditions. 

Article Details

How to Cite
[1]
M. Szumilas, “Biosignal-Based Machine Learning Predictors of Sepsis: A Mini-Review”, Acta Phys. Pol. A, vol. 146, no. 4, p. 388, Nov. 2024, doi: 10.12693/APhysPolA.146.388.
Section
Special segment

References

Z. Yang, X. Cui, Z. Song, BMC Infect. Dis. 23, 635 (2023)

M.R. Pinsky, A. Bedoya, A. Bihorac et al., Crit. Care 28, 113 (2024)

S. Lyra, J. Jin, S. Leonhardt, M. Lüken, in: 2023 45th Annual Int. Conf. of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2023

Z. Jiang, L. Bo, L. Wang, Y. Xie, J. Cao, Y. Yao, W. Lu, X. Deng, T. Yang, J. Bian, Comput. Methods Programs Biomed. 241, 107772 (2023)

M. Moor, N. Bennett, D. Plečko, M. Horn, B. Rieck, N. Meinshausen, P. Bühlmann, K. Borgwardt, EClinicalMedicine 62, 102124 (2023)

J. Li, F. Xi, W. Yu, C. Sun, X. Wang, JMIR Form. Res. 7, e42452 (2023)

Q. Chen, R. Li, C. Lin et al., BMC Med. Inform. Decis. Mak. 22, 343 (2022)

S. Liu, W. Wang, M. Liu, X. Sun, IEEE J. Biomed. Health Inform. 26, 4258 (2022)

J.K. Kim, W. Ahn, S. Park, S.-H. Lee, L. Kim, Int. J. Environ. Res. Public Health 19, 2349 (2022)

G. Ramos, E. Gjini, L. Coelho, M. Silveira, in: 2021 43rd Annual Int. Conf. of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2021, 1916

M. Mollura, L.-W.H. Lehman, R.G. Mark, R. Barbieri, Philos. Trans. A Math. Phys. Eng. Sci. 379, 20200252 (2021)

I. Persson, A. Östling, M. Arlbrandt, J. Söderberg, D. Becedas, JMIR Form. Res. 5, e28000 (2021)

S.P. Shashikumar, C.S. Josef, A. Sharma, S. Nemati, Artif. Intell. Med. 113, 102036 (2021)

T. Açuroğlu, H. Oğul, Comput. Methods Programs Biomed. 198, 105816 (2021)

J. Gao, P.L. Mar, G. Chen, AMIA Jt. Summits Transl. Sci. Proc. 2021, 220 (2021)

H. Dai, H.-G. Hwang, V.S. Tseng, IEEE J. Biomed. Health Inform. 27, 3610 (2023)

E.A.T. Strickler, J. Thomas, J.P. Thomas, B. Benjamin, R. Shamsuddin, Sci. Rep. 13, 3067 (2023)

N. Nesaragi, S. Patidar, V. Aggarwal, Comput. Biol. Med. 134, 104430 (2021)

A. Rafiei, A. Rezaee, F. Hajati, S. Gheisari, M. Golzan, Comput. Biol. Med. 128, 104110 (2021)

N. Nesaragi, S. Patidar, Crit. Care Med. 48, e1343 (2020)

R. Liu, J. Greenstein, J.C. Fackler, J. Bergmann, M.M. Bembea, R.L. Winslow, Crit. Care Explor. 3, e0442 (2021)

T. Kim, Y. Tae, H.J. Yeo et al., J. Clin. Med. 12, 7156 (2023)

A.M. St'llhammar, A. Honoré, K. Adolphson, D. Forsberg, E. Herlenius, K. Jost, Acta Paediatr. 112, 1443 (2023)

S.L. Kausch, J.G. Brandberg, J. Qiu et al., Pediatr. Res. 93, 1913 (2023)

M. Sung, S. Hahn, C.H. Han, J.M. Lee, J. Lee, J. Yoo, J. Heo, Y.S. Kim, K.S. Chung, JMIR Med. Inform. 9, e26426 (2021)

S.P. Shashikumar, G. Wardi, A. Malhotra, S. Nemati, NPJ Digit. Med. 4, 134 (2021)

L.A. Arriaga-Pizano, M.A. Gonzalez-Olvera, E.A. Ferat-Osorio et al., Comput. Methods Programs Biomed. 210, 106366 (2021)

X. Chen, R. Zhang, X.-Y. Tang, Eur. Rev. Med. Pharmacol. Sci. 25, 4693 (2021)

Z. Liu, A. Khojandi, A. Mohammed, X. Li, L.K. Chinthala, R.L. Davis, R. Kamaleswaran, Comput. Biol. Med. 131, 104255 (2021)

L. Cabrera-Quiros, D. Kommers, M.K. Wolvers et al., Crit. Care Explor. 3, e0302 (2021)

K.H. Goh, L. Wang, A.Y.K. Yeow, H. Poh, K. Li, J.J.L. Yeow, G.Y.H. Tan, Nat. Commun. 12, 711 (2021)

C. Leon, G. Carrault, P. Pladys, A. Beuchée, IEEE J. Biomed. Health Inform. 25, 1006 (2021)

L.A. Jeni, J.F. Cohn, F. De La Torre, in: 2013 Humaine Association Conf. on Affective Computing and Intelligent Interaction, IEEE, 2013, p. 245

V. Bellini, M. Valente, P. Pelosi, P. Del Rio, E. Bignami, Neurocrit. Care 37, 170 (2022)

M. Schootman, C. Wiskow, T. Loux, L. Meyer, S. Powell, A. Gandhi, A. Lacasse, J. Crit. Care 71, 154061 (2022)

O. Ericson, J. Hjelmgren, F. Sjövall, J. Söderberg, I. Persson, J. Health Econ. Outcomes Res. 9, 101 (2022)