Fuzzy Control of Gun Barrel Movement: Fuzzy Logic and the Gun Barrel's Precision Dance

Main Article Content

F. Ribní
A.R. Várkonyi-Kóczy

Abstract

The scientific and technical aspects of gun barrel movement for effective attack and defense are of ultimate significance. The precise control of the gun barrel is of strategic importance during targeting, especially in changing environmental conditions. Fuzzy logic control offers a powerful alternative to classical and manual solutions to deal with the complexity and uncertainties of dynamic systems, thus increasing targeting accuracy and precision. This approach provides adaptability and intuitive parameterization while simplifying system design and implementation. On the other hand, in fuzzy control management, accurate modeling and visualization of gun barrel movement is essential to achieve efficient aiming and performance. Many papers and realizations can be found on the (automatic) fuzzy control of cannon barrels. In this paper, the authors also suggest an implementation of a fuzzy-controlled cannon barrel. The novelty of this approach is the application of new defuzzification methods, resulting in an accurate solution for the problem. The article starts with a review of the theory and literature on the control of cannon barrels. It is followed by a comparison of different implementations, including simulation tests on the accuracy, and a discussion of some practical issues.

Article Details

How to Cite
[1]
F. Ribní and A. Várkonyi-Kóczy, “Fuzzy Control of Gun Barrel Movement: Fuzzy Logic and the Gun Barrel’s Precision Dance”, Acta Phys. Pol. A, vol. 146, no. 4, p. 355, Nov. 2024, doi: 10.12693/APhysPolA.146.355.
Section
Special segment

References

A. Żyluk, K. Kuźma, N. Grzesik, M. Zieja, J. Tomaszewska, Sensors 21, 7913 (2021)

M.A. Muslim, D. Minggu, J. Saputra, R.N. Hasanah, ARPN J. Eng. Appl. Sci. 10, 9765 (2015)

Z. Zhao, X. Xu, X. Hao, SPIE Proc. 12492, 124920B (2022)

A.I.E. Yakzan, A.A. Khan, E.L. Hines, D. Iliescu, in: UKSim 14th Int. Conf. on Computer Modelling and Simulation, 2012}

M.J. Er, Y. Gao, IEEE Trans. Ind. Electron. 50, 620 (2003)

L. A. Zadeh, Fuzzy Sets Syst. 11, 199 (1983)

H.W. Pout, in: The Applications of Radar and other Electronic Systems in the Royal Navy in World War 2, Ed. F.A. Kingsley, Palgrave Macmillan, London 1995

M.H. Homaei, F. Soleimani, S. Shamshirband, A. Mosavi, N. Nabipour, A. Varkonyi-Koczy, IEEE Access 8, 20628 (2020)

A.R. Varkonyi-Koczy, B. Tusor, IEEE Trans. Instrum. Meas. 60, 1505 (2011)

A. Dineva, A.R. Varkonyi-Koczy, J.K. Tar, in: IEEE 18th Int. Conf. on Intelligent Engineering Systems (INES 2014), 2014, p. 163

M.A. Koç, Arab. J. Sci. Eng. 47, 8829 (2022)

M.A. Muslim, D. Minggu, J. Saputra, R.N. Hasanah, J. Eng. Appl. Sci. 10, 9765 (2015)

Q. Yang, Q. Yan, J. Cai, J. Tian, X. Guan, IEEE Access 8, 72179 (2020)

Y. Zhang, Q. Yan, J. Cai, X. Wu, IEEE Access 8, 63443 (2020)

T. Fan, J. Zhou, Y.J. Tian, K. Huang, J. Phys. Conf. Ser. 2460, 012113 (2023)

Y.-F. Xu, B. Gu, J.-P. Lei, C.-L. Shan, H. Liang, J. Phys. Conf. Ser. 2460, 012021 (2023)

V.H. Pinto, J. Gonçalves, P. Costa, Appl. Syst. Innov. 3, 24 (2020)

R.F.K. Tagne, R.T. Fotsa, P. Woafo, Int. J. Bifurc. Chaos 31, 2150178 (2021)

C.R. Rocha, C.P. Tonetto, J.M. Bernardes, Robot. Comput.-Integr. Manuf. 27, 723 (2011)

S. Shim, S. Lee, S. Joo, J. Seo, J. Mech. Robot. 14, 054505 (2022)

M.J. Thomas, M.M. Sanjeev, A.P. Sudheer, M.L. Joy, Ind. Robot Int. J. 47, 683 (2020)

S. Ayik, K. Sekizawa, Phys. Rev. C 102, 064619 (2020)

J. Kaur, A. Ghosh, M. Bandyopadhyay, Physica A Stat. Mech. Appl. 625, 128993 (2023)

P. Zhao, J. Liu, Y. Li, C. Wu, Nonlinear Dyn. 105, 1437 (2021)

A.M. Bersani, P. Caressa, Math. Mech. Solids 26, 785 (2020)

V.S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Acta Phys. Pol. A 3, 265 (2021)

B. Pardo, N. T. Maia, Phys. Rev. 102, 124020 (2020)

A.B. Tatar, B. Tac{s}ar, O. Yakut, Arab. J. Sci. Eng. 45, 5191 (2020)

X. Ma, W. Deng, S.S. Yuan, J. Yao, G. Yang, J. Phys. Conf. Ser. 1507, 052001 (2020)

L. Fu, H. Nakamura, S. Chi, Y. Yamamoto, T. Miura, J. Adv. Concr. Technol. 19, 1245 (2021)

T.L. Hubbard, Psychonom. Bull. Rev. 27, 36 (2019)

S. Sarkar, B. Fitzgerald, Struct. Control Health Monitor. 27, e2471 (2019)

J.L. Bradshaw, Eur. J. Phys. 44, 025001 (2022)

S.E. Lyshevski, Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC Press eBooks, 2018

E. Fable, C. Angioni, Plasma Phys. Controll. Fusion 65, 115007 (2023)

S. Laengle, V. Lobos, J.M. Merigó, E. Herrera-Viedma, M.J. Cobo, B. De Baets, Fuzzy Sets Syst. 402, 155 (2021)

S. Das, D. Chakraborty, L.T. Kóczy, Iran. J. Fuzzy Syst. 20, 127 (2023)

M.-W. Tian, A. Mohammadzadeh, J. Tavoosi, S. Mobayen, J.H. Asad, O. Castillo, A.R. Varkonyi-Koczy, Acta Polytech. Hung. 19, 152 (2022)

A. Piegat, K. Tomaszewska, Przegląd elektrotechniczny 2017, 110 (2017)

A. Piegat, K. Tomaszewska, in: Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications, Eds. K.T . Atanassov, J. Kacprzyk, A. Kałuszko, M. Krawczak, J. Owsiński, S. Sotirov, E. Sotirova, E. Szmidt, S. Zadrożny, 2017 p. 71

S. Spolaor, C. Fuchs, P. Cazzaniga, U. Kaymak, D. Besozzi, M. S. Nobile, Int. J. Computat. Intell. Syst. 13, 1687 (2020)

G. Joya, M. Atencia, F. Hernández, Neurocomputing 43, 219 (2002)

X. Li, J. Wang, S. Kwong, IEEE Trans. Neural Networks Learn. Syst. 33, 5116 (2021)

S.S.M. Sidik, N.E. Zamri, M.S.M. Kasihmuddin, H.A. Wahab, Y. Guo, M.A. Mansor, Mathematics 10, 1129 (2022)

T. Kmet, M. Kmetová, in: Artificial Neural Networks, Eds. P. Koprinkova-Hristova, V. Mladenov, N. Kasabov, 2015, p. 315

J. Krepel, M. Kircher, M. Kohls, K. Jung, Stat. Anal. Data Mining 15, 112 (2021)

V. Stamatis, M. Salampasis, K.I. Diamantaras, Data Technol. Appl. 58, 363 (2023)

N.S. Chang, K. Bai, C.F. Chen, J. Environ. Manag. 201, 227 (2017)

Janes website, 2024