The Concept of Heat and the Hysteresis Loop: The Evolution of the Losses Models
Main Article Content
Abstract
The origin of iron losses in ferromagnetic materials is commented on, starting with the definition of heat. The different possible dissipative mechanisms inside a hysteresis curve, which originate heat, as well as its relationship to the magnetic Barkhausen noise, are discussed in detail. The loss separation model is better explained by using the concept of heat, especially to understand losses when eddy currents are small (at very low frequencies).
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
J.B.F. Fourier, The Analytical Theory of Heat, trans. A. Freeman, Cambridge University Press, 2009 (1st ed. 1822)
O. Heaviside, The Electrician, 1884, p. 583
J.J. Thomson, The Electrician, 1892, p. 599
J. Epstein, J. Inst. Electr. Eng. 38, 28 (1907)
V.E. Legg, The Bell Syst. Tech. J. 15, 39 (1936)
G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium System, John Wiley & Sons, 1977
P. Ball, The Elements: A Visual History of Their Discovery, University of Chicago Press, 2021
H. Guerlac, Hist. Stud. Phys. Sci. 7, 193 (1976)
P. Needham, Int. Stud. Philos. Sci. 16, 205 (2002)
R.B. Guenther, J.W. Lee, Aspects of Integration: Novel Approaches to the Riemann and Lebesgue Integrals, CRC Press, Chapman & Hall, 2023
J. Coopersmith, Energy, the Subtle Concept: The Discovery of Feynman's Blocks from Leibniz to Einstein, Oxford University Press, 2015
M. Planck, Ann. Phys. 309, 553 (1901)
M. Planck, Eight Lectures on Theoretical Physics Delivered at Columbia University in 1909, New York Columbia University Press, 1915
M. Planck, Nobel Lectures --- Physics 1901--1921, Elsevier Publishing Company, Amsterdam 1967
C.A. Gearhart, Boltzmann's Atom: The Great Debate that Launched a Revolution in Physics, David Lindley Free Press, New York 2001
G. Binnig, H. Rohrer, Rev. Mod. Phys. 59, 615 (1987)
J.C. Maxwell, Theory of Heat, 1872
C. Charalampous, Perspect. Sci. 29, 189 (2021)
G.S. Smith, Eur. J. Phys. 35, 025002 (2014)
B.J. Hunt, The Maxwellians, Cornell University Press, 1994
S. Esteban, J. Chem. Educ. 85, 1201 (2008)
A. Fick, Phil. Mag. 10, 30 (1855)
G.S. Ohm, The Galvanic Circuit Investigated Mathematically, 1st English trans. from 1st ed., William Francis, New York 1827
T.N. Narasimhan, Rev. Geophys. 37, 151 (1999)
W. Thomson, Philos. Mag. 7, 502 (1854)
M.F. de Campos, Mater. Sci. Forum, 727-728, 163 (2012)
J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford University Press, New York 1975
W. Ostwald, Outlines of General Chemistry, trans. T.W. White, Macmillan and co., London 1912
B.A. Pletcher, K.-G. Wang, M. E. Glicksman, Int. J. Mater. Res. 103, 1289 (2012)
E. Hornbogen, J. Light Metals 1, 127 (2001)
G. Ertl, Angew. Chem. Int. Ed. 48, 6600 (2009)
A. Einstein, Ann. Phys. 322, 549 (1905) (in German)
M. von Smoluchowski, Ann. Phys. 326, 756 (1906) (in German)
J. Perrin, J. Phys. Theor. Appl. 9, 5 (1910)
J. Renn, Ann. Phys. 14, Supplement, 23 (2005)
B.W. Lawrence, Proc. R. Soc. Lond. A 89, 468 (1914)
S. Ono, H. Satomi, J. Yuhara, Comput. Mater. Sci. 218, 111959 (2023)
R. de Andrade Martins, Notes Rec. 76, 117 (2022)
H. Barkhausen, Phys. Z. 20, 401 (1919)
E.C. Stoner, Rev. Mod. Phys. 25, 2 (1953)
L.F.T. Costa, G.J.L. Gerhardt, F.P. Missell, M.F. de Campos, Acta Phys. Pol. A 136, 740 (2019)
C.-H. Hsu, Y.-M. Huang, M.-F. Hsieh, C.-M. Fu, S. Adireddy, D.B. Chrisey, AIP Adv. 7, 056681 (2017)
C. Donaghy-Spargo, Philos. Trans. R. Soc. A 376, 20170457 (2018)
J.W. Cahn, in: The Selected Works of John W. Cahn, Eds. W.C. Carter, W.C. Johnson, Wiley 1998
C.W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, 1977, p. 129
S.R. Janasi, V.A. Lázaro-Colán, F.J.G. Landgraf, M.F. de Campos, Mater. Sci. Forum 775--776, 404 (2014)
K.H. Stewart, Proc. Phys. Soc. A 63, 761 (1950)
K.H. Stewart, J. Phys. Radium 12, 325 (1951)
M.F. de Campos, M. Emura, F.J.G. Landgraf, J. Magn. Magn. Mater. 304, e593 (2006)
J.J. Becker, J. Appl. Phys. 34, 1327 (1963)
C.D. Graham, J. Appl. Phys. 53, 8276 (1982)
T. Tanzer, H. Pregartner, R. Labinsky, M. Witlatschil, A. Muetze, K. Krischan, in: 2017 IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2017
S. Taguchi, Trans. ISIJ 17, 604 (1977)
J.R. Partington, D. McKie, Ann. Sci. 4, 113 (1939)
I. Yavetz, From Obscurity to Enigma: The Work of Oliver Heaviside 1872--1889, 1995
A. Russell, A Treatise on the Theory of Alternating Currents, Vol. 1, 1st Ed. Cambridge University Press, 1904
D.K. Morris, G.A. Lister, J. Inst. Electr. Eng. 37, 264 (1906)
S.H. Chen, S.C. Chang, C.Y. Tsay, K.S. Liu, I.N. Lin, J. Eur. Ceram. Soc. 21, 1931 (2001)
O. Inoue, N. Matsutani, K. Kugimiya, IEEE Trans. Magn. 29, 3532 (1993)
H. Kobiki, A. Fujita, S. Gotoh, J. Phys. IV Proc. 7, C1-103 (1997)
W.H. Jeong, Y.H. Han, B.M. Song, J. Appl. Phys. 91, 7619 (2002)
A. Fujita, H. Kobiki, S. Gotoh, J. Magn. Soc. Jpn. 22, Supplement, S1 (1998)
P. Jabłoński, M. Najgebauer, M. Bereźnicki, Energies 15, 2869 (2022)
R.H. Pry, C.P. Bean, J. Appl. Phys. 29, 532 (1958)
M.F. de Campos, Acta Phys. Pol. A 136, 705 (2019)
T.R. Haller, J.J. Kramer, J. Appl. Phys. 41, 1034 (1970)
T.R. Haller, J.J. Kramer, J. Appl. Phys. 41, 1036 (1970)
Y. Sakaki, IEEE Trans. Magn. 16, 569 (1980)
M.F. de Campos, J.C Teixeira, F.J.G. Landgraf, J. Magn. Magn. Mater. 301, 94 (2006)
E.T. Stephenson, J. Appl. Phys. 57, 4226 (1985)
M.A. Trindade, M.F. de Campos, F.J.G. Landgraf, N.B. de Lima, A. Almeida, Mater. Sci. Forum 930, 466 (2018)
J. Hong, H. Choi, S. Lee, J.K. Kim, Y.M. Koo, J. Magn. Magn. Mater. 439, 343 (2017)
D.L. Rodrigues, J.R.F. Silveira, G.J.L. Gerhardt, F.P. Missell, F.J.G. Landgraf, R. Machado, M.F. de Campos, IEEE Trans. Magn. 48, 1425 (2012)
S.E. Zirka, Y.I. Moroz, S. Steentjes, K. Hameyer, K. Chwastek, S. Zurek, J. Magn. Magn. Mater. 394, 229 (2015)
P. Beckley, J.E. Thompson, Proc. IEEE 117, 2194 (1970)
K.M. Marra, F.J.G. Landgraf, V.T. Buono, J. Magn. Magn. Mater. 320, e631 (2008)
A.A. de Almeida, F.J.G. Landgraf, Mater. Res. 22, e20180506 (2019)
W.A. Pluta, J. Magn. Magn. Mater. 499, 166270 (2020)
M.F. de Campos, M.A. Campos, F.J.G. Landgraf, L.R. Padovese, J. Phys. Conf. Ser. 303, 012020 (2011)
F. Brailsford, Z.H.M. Abu-Eid, Proc. Inst. Electr. Eng. 110, 751 (1963)
F. Brailsford, Physical Principles of Magnetism, Van Nostrand, London 1966
D. Brown, C. Holt, J.E. Thompson, Proc. Inst. Electr. Eng. 112, 183 (1965)
K. Ali, K. Atallah, D. Howe, in: Int. Workshop on Rare-Earth Magnets and Their Applications 14, São Paulo 1996, World Scientific, Singapore 1996, p. 632
A. Baghel, J. Blumenfeld, L. Santandrea, G. Krebs, L. Daniel, Electr. Eng. 101, 845 (2019)
N. Morito, M. Komatsubara, Y. Shimizu, History and Recent Development of Grain Oriented Electrical Steel. at Kawasaki Steel, Kawasaki Steel Technical Report No. 39, 1998, p. 3
M. Najgebauer, J. Szczyglowski, A. Kaplon, in: 2015 Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce (Poland), IEEE, 2015
G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, J. Magn. Magn. Mater. 481, 234 (2019)
N. Leuning, M. Jaeger, B. Schauerte et al., Materials 14, 6588 (2021)
Y. Du, R. O'Malley, M.F. Buchely, Appl. Sci. 13, 6097 (2023)
C.-L. Lin, H.-M. Dai, C.-H. Chao, S. Wei, C.-F. Yang, Sensors Mater. 35, 4131 (2023)
M.F de Campos, Przegląd Elektrotechniczny 2019, 7 (2019)