Long-term Stability of Alignment of Biaxial Microelectromechanical System Accelerometers

Main Article Content

S. Łuczak
M. Zaczyk
H. Grzywacz

Abstract

The long-term stability of alignment precision of microelectromechanical system accelerometers was evaluated. Four commercial biaxial accelerometers (two ADXL 202E and two ADXL 203 accelerometers by Analog Devices Inc.) were tested over a period of 20 and 15 years, respectively. The experimental studies were performed using a custom computer-controlled test rig and employing gravitational acceleration as the reference. Considerable changes in the existing misalignments were observed. It was found that not only misalignments between the sensitive axes changed over time, but due to some micro-movements within the mounting of the printed circuit board with the accelerometer chip, misalignments of the sensitive axes with respect to the mounting datum changed as well. Even though no bigger than 0.6°, the observed misalignments may considerably influence the accelerometer performance, especially in the case of tilt measurements. Some ways of increasing the considered long-term stability of printed circuit board mounting are proposed.

Article Details

How to Cite
[1]
S. Łuczak, M. Zaczyk, and H. Grzywacz, “Long-term Stability of Alignment of Biaxial Microelectromechanical System Accelerometers”, Acta Phys. Pol. A, vol. 146, no. 4, p. 325, Nov. 2024, doi: 10.12693/APhysPolA.146.325.
Section
Special segment

References

A. Neels, A. Dommann, A. Schifferle, O. Papes, E. Mazza, Microelectron. Reliab. 48, 1245 (2008)

A. Neels, G. Bourban, H. Shea, A. Schifferle, E. Mazza, A. Dommann, Proc. Chem. 1, 820 (2009)

F. Schneider, T. Fellner, J. Wilde, U. Wallrabe, J. Micromech. Microeng. 18, 065008 (2008)

S. Habibi, S.J. Cooper, J.-M. Stauffer, B. Dutoit, in: IEEE/ION Position, Location and Navigation Symposium, Monterey (CA), IEEE, 2008, p. 232

A. Ya'akobovitz, S. Krylov, IEEE Sens. J. 10, 1311 (2010)

Y. Yang, E.J. Ng, P.M. Polunin, Y. Chen, I.B. Flader, S.W. Shaw, M.I. Dykman, T.W. Kenny, J. Micromech. Microeng. 25, 859 (2016)

Y. Xing, T. Yu, H. Yan C. Yue, J. Zhao, M. Hu, IEEE Sensors J. 23, 21327 (2023)

A. Yang, P. Wang, H. Yang, IEEE Sensors J. 21, 24274 (2021)

V. Mulloni, M. Barbato, G. Meneghesso, J. Micromech. Microeng. 26, 074004 (2016)

C.H. He, Y.P. Wang, Q.W. Huang, Q.C. Zhao, Z.C. Yang, D.C. Zhang, in: Proc. 2017 19th Int. Conf. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, IEEE, 2017

J. Zhang, Y. Wu, Q. Liu, F. Gu, X. Mao, M. Li, Micromachines 6, 554 (2015)

M. Barbato, A. Cester, G. Meneghesso, IEEE Trans. Electron Devices 63, 3620 (2016)

X. Xiong, Y.-L. Wu, W.-B. Jone, in: IEEE Int. Symp. on Defect and Fault Tolerance of VLSI Systems, Boston (MA), IEEE, 2008, p. 314

A.S. Önen, Y. Günhan, in: 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey (CA), IEEE, 2018, p. 546

P. Peng, W. Zhou, L. Li, J. He, B. Peng, H. Yu, IEEE Sens. J. 23, 202 (2023)

S. Łuczak, J. Wierciak, W. Credo, IEEE Sens. J. 21, 1305 (2021)

S. Łuczak, M. Zams, K. Bagiński, J. Sens. 2019, 5184907 (2019)

Z. Syed, P. Aggarwal, C. Goodall, X. Niu, N. El-Sheimy, Meas. Sci. Technol. 18, 1897 (2007)

W.S. de Aj'uro Rocha, J.C.G. Rodrigues, A.A.A.E. de Queiroz, A.A.A. de Queiroz, IEEE Sens. J. 20, 155 (2020)

S. Łuczak, Int. J. Precis. Eng. Manuf. 15, 2012 (2014)

B. Fan, Q. Li, T. Tan, P. Kang, P.B. Shull, IEEE Sens. J. 22, 2543 (2022)

S. Łuczak, in: Mechatronics 2013. Recent Technological and Scientific Advances, Eds. T. Brezina, R. Jabłoński, Springer International Publishing, Cham 2014 p. 393

J. Segovia-Fernandez, Y. Suzuki, M. Chowdhury, J. Rojas, E.T.-T. Yen, in: Proc. Joint Conf. Eur. Frequency Time Forum IEEE Int. Frequency Control Symp. (EFTF/IFCS), 2022, p. 1

J. Segovia-Fernandez, E. Tuncer, S. Chang, and E.T.-T. Yen, in: Proc. Joint Conf. Eur. Frequency Time Forum IEEE Int. Frequency Control Symp. (EFTF/IFCS), 2022 p. 1

J. Dhennin, D. Lellouchi, F. Pressecq, in: Proc. 2015 Symp. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Montpellier, France, 2015, p. 1}

K. Krupa, C. Gorecki, R. Jóźwicki, M. Józwik, A. Andrei, Sens. Actuators A 171, 306 (2011)

H.R. Shea, in: Proc. SPIE, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, Vol. 6111, 2006, p. 61110A

L. Qian, F. Qin, K. Li, T. Zhu, IEEE Sens. J. 23, 16968 (2023)

J.S. Wilson, Sensor Technology Handbook, Newnes, Burlington (MA) 2005, p. 396

Analog Devices, Data Sheet no. ADXL103/ADXL203, Norwood (MA) 2004

Analog Devices, Data Sheet no. ADXL202E*, Norwood (MA) 2000

S. Yun, D. Jeong, S. Wang, C. Je, M. Lee, G. Hwang, C. Choi, J. Lee, J. Micromech. Microeng. 19, 035025 (2009)

C. Acar, A. Shkel, J. Micromech. Microeng. 18, 634 (2003)

S. Łuczak, in: Advanced Mechatronics Solutions, Eds. R. Jabłoński, T. Brezina, Springer International Publishing, Switzerland 2016, p. 481

MEMSIC, Application Note no. 5/12/03, #AN-00MX-014, North Andover (MA) 2005

M. Šipoš, P. Pačes, J. Roháč, P. Nováček, IEEE Sens. J. 12, 1157 (2012)

X. Ru, N. Gu, H. Shang, H. Zhang, Micromachines 2022, 879, (2022)

S. Łuczak, in: Recent Advances in Mechatronics, Eds. R. Jabłoński, M. Turkowski, R. Szewczyk, Springer-Verlag, Berlin 2007, p. 511

X. Dong, X. Huang, G. Du, Q. Huang, Y. Huang, Y. Huang, P. Lai, Micromachines 2022, 62, (2022)

S. Łuczak, in: Mechatronics. Recent Technological and Scientific Advances, Eds. R. Jabloński, T. Brezina, Springer-Verlag, Berlin 2012, p. 705

G. Zhao, M. Tan, X. Wang, W. Liang, S. Gao, Z. Chen, Micromachines 2023, 697 (2023)

M. Liu, Y. Cai, L. Zhang, Y. Wang, Micromachines 2021, 1373, (2021)

S. Łuczak, IEEE Sens. J. 15, 3492 (2015)

MicroStrain, Technical Note no. TN-I0029, 2012