Structural, Electronic, Elastic and Hydrogen Storage Properties of Calcium Bis(tetrahydridoborate): A First-Principles Study
Main Article Content
Abstract
First-principles calculations were carried out to study the electronic structure and mechanical and hydrogen storage properties of calcium bis(tetrahydridoborate) using density functional theory. The obtained equilibrium lattice parameters are in good agreement with the available experimental data. The stability of the structure at zero pressure is determined by the calculation of the elastic coefficients. Nevertheless, the existence of elastic anisotropy in the compound demonstrates its lower compressibility along the c-axis than the a- and b-axes. F2dd-Ca(BH4)2 is nonmetallic with a wide band gap of 5.54 eV. In this regard, Ca(BH4)2 is promising for hydrogen storage applications at the expense of its high hydrogen volume density of 130 g/L (more than that of liquid hydrogen) and a hydrogen gravimetric density of 11.46 wt%, exceeding the U.S. Department of Energy's 2025 goal of 5.5 wt%.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R.U. Amate, P.J. Morankar, A.M. Teli, S.A. Beknalkar, G.T. Chavan, N.A. Ahir, D.S. Dalavi, C. Jeon, Chem. Eng. J. 484, 149556 (2024)
G. Yang, X. Zhao, F. Liao, Q. Cheng, L. Mao, H. Fa, L. Chen, Sustain. Energy Fuels 5, 3039 (2021)
F. Shirvani, A. Shokri, B. Abedi Ravan, M.S. Akhoundi Khezrabad, Solid State Commun. 343, 114642 (2022)
R. Vicentini, R. Beraldo, J. Aguiar, F. Oliveira, F. Runo, D. Larrude, L. Da Silva, H. Zanin, J. Energy Storage 44, 103371 (2021)
F. Shirvani, A. Shokri, Phys. B Condens. Matter 649, 414459 (2023)
V. Laguta, M. Marysko, V. Stephanovich et al., Acta Phys. Pol. A 131, 1534 (2017)
K. Domieracki, D. Kaczorowski, Acta Phys. Pol. A 130, 593 (2016)
J. Gosk, M. Boćkowski, M. Tokarczyk, G. Kowalski, A. Twardowski, Acta Phys. Pol. A 124, 877 (2013)
S. Mammadova, E. Nakhmedov, O. Alekperov, Acta Phys. Pol. A 129, 800 (2016)
S. Berri, Comput. Condens. Matter 29, e00595 (2021)
S. Berri, J. Phys. Chem. Solids 170, 110940 (2022)
S. Berri, Acta Phys. Pol. A 138, 834 (2018)
S. Berri, Chem. Phys. Lett. 826, 140653 (2023)
S. Berri, Chinese J. Phys. 55, 2476 (2017)
S. Berri, Comput. Condens. Matter. 28, e00586 (2021)
L.E. Bell, Science 321, 1457 (2008)
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009)
L. Shi, C. Dames, J.R. Lukes, P. Reddy, J. Duda, D.G. Cahill, J. Lee, A. Marconnet, K.E. Goodson, J.-H. Bahk, Nanoscale Microscale Thermophys. Eng. 19, 127 (2015)
S.R. Bull, Proc. IEEE 89, 1216 (2001)
M. Zhu, C. Lu, L. Liu, Iscience 26, 106718 (2023)
S. Berri, Comput. Condens. Matter. 39, e00902 (2021)
M.A. Green, Nat. Energy 1, 15015 (2016)
A.-L. Chaudhary, S. Dietzel, H.-W. Li et al. Int. J. Hydrogen Energy 42, 11422 (2017)
H.X. Li, C.B. Wan, X.C. Li et al. Int. J. Hydrogen Energy 47, 1723 (2022)
S. Al, M. Yortanlı, E. Mete, Int. J. Hydrogen Energy 45, 18782 (2020)
A. Gencer, G. Surucu, S. Al, Int. J. Hydrogen Energy 44, 11930 (2019)
C.B. Minella, S. Garroni, C. Pistidda et al., J. Phys. Chem. C 115, 2497 (2011)
T.J.J. Frankcombe, Phys. Chem. C 114, 9503 (2010)
V. Ozolins, E.H. Majzoub, C. Wolverton, J. Am. Chem. Soc. 131, 230 (2009)
K. Miwa, M. Aoki, T. Noritake, N. Ohba, Y. Nakamori, S. Towata, A. Züttel, S. Orimo, Phys. Rev. B 74, 155122 (2006)
J.-H Kim, S.-A. Jin, J.-H. Shim, Y.W. Cho, J. Alloys Compd. 461, L20 (2008)
S. Di Cataldo, L. Boeri, Phys. Rev. B 107, L060501 (2023)
C. Rongeat, I. Lindemann, A. Borgschulte, L. Schultz, O. Gutfleisch, Int. J. Hydrogen Energy 36, 247 (2011)
D. Vanderbilt, Phys. Rev. B 56, 1625 (1997)
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)
F. Mouhat, F.-X. Coudert, Phys. Rev. B 90, 224104 (2014)
R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)
Y.-S. Lee, Y. Kim, Y.W. Cho, D. Shapiro, C. Wolverton V. Ozolinš, Phys. Rev. B 79, 104107 (2009)
C. Comanescu, Energies 16, 4536 (2023)
Y. Filinchuk, E. Ronnebro, D. Chandra, Acta Mater. 57, 732 (2009)
S. Berri, J. Supercond. Nov. Magn. 33, 3809 (2020)
J. Hirsch, Acta Phys. Pol. A 133, 350 (2018)
M.G. Brik, J. Phys. Chem. Solid 71, 1435 (2010)
R. Gaillac, P. Pullumbi, F.-X. Coudert, J. Phys. Condens. Matter 28, 275201 (2016)
M. Aoki, K. Miwa, T. Noritake, H.-W. Li S.-i. Orimo, R&D Rev. Toyota CRDL 44, 43 (2013)
M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996)
B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, Springer 2003, p. 1
P.P. Altermatt, A. Schenk, F. Geelhaar, G. Heiser, J. Appl. Phys. 93, 1598 (2003)
J. Millán, P. Godignon, X. Perpiñá, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)
S. Berri, Eur. Phys. J. B 93, 191 (2020)
W.N. Shafarman, L. Stolt, Cu(InGa)Se_2 Solar Cells, John Wiley & Sons, 2003
X. Wu, Solar Energy 77, 803 (2004)
H.H. Raza, G. Murtaza, Umm-e-Hani, N. Muhammad, S.M. Ramay, Int. J. Quant. Chem. 120, e26419 (2020)
X. Zhang, D. Cao, J. Chen, J. Phys. Chem. B 107, 4942 (2003)
M. Abdellaoui, M. Lakhal, H. Benzidi, M. Garara, A. Benyoussef, A. El Kenz, O. Mounkachi, M. Loulidi, H. Ez-Zahraouy, Appl. Phys. A 125, 760 (2019)
M. Garara, H. Benzidi, M. Abdellaoui, M. Lakhal, A. El kenz, A. Benyoussef, O. Mounkachi M. Loulidi, Mater. Chem. Phys. 254, 123417 (2020)
A. Mera, M.A. Rehman, Int. J. Hydrogen. Energy 50, 1435 (2024)