Antiferromagnetic Ordering in VFeNbTiMo High-Entropy Alloy at Low Temperatures

Main Article Content

P. Sobota
R. Idczak
R. Konieczny
W. Nowak
V.H. Tran

Abstract

Structural and physical properties of the VFeNbTiMo high-entropy alloy were studied by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, 57Fe transmission Mössbauer spectroscopy, and magnetic measurements. It was found that the alloy forms two chemically distinct phases. The first, Mo-rich phase, crystallizes in a body-centered cubic structure (space group Im3m) with a= 3.1626(1) Å. The second, Fe-rich phase, crystallizes in a hexagonal structure (space group P6_3/mmc) with a=4.9245(2) Å, c=8.0419(5) Å. Magnetic measurements and 57Fe transmission Mössbauer spectroscopy showed that the alloy is in a paramagnetic state at temperatures between 5 and 700 K. Below 5 K, the hexagonal Fe-rich phase undergoes an antiferromagnetic transition.

Article Details

How to Cite
[1]
P. Sobota, R. Idczak, R. Konieczny, W. Nowak, and V. Tran, “Antiferromagnetic Ordering in VFeNbTiMo High-Entropy Alloy at Low Temperatures”, Acta Phys. Pol. A, vol. 146, no. 3, p. 250, Nov. 2024, doi: 10.12693/APhysPolA.146.250.
Section
Special segment

References

B. Cantor, Prog. Mater. Sci. 120, 100754 (2021)

J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3, 95 (2015)

B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

Y. Chen, U. Hong, J. Yeh, H. Shih, Scr. Mater. 54, 1997 (2006)

Y. Yu, J. Wang, J. Li, H. Kou, W. Liu, Mater. Lett. 138, 78 (2015)

P. Sobota, R. Topolnicki, T. Ossowski, T. Pikula, D. Gnida, R. Idczak, A. Pikul, Sci. Rep. 13, 16317 (2023)

Q. Lan, A. Kovàcs, J. Caron et al., iScience 25, 104047 (2022)

N. Greenwood, T. Gibb, Mössbauer Spectroscopy, John Wiley & Sons, 1971

P. Gütlich, E. Bill, A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer, Berlin 2010

A. Perrin, M. Sorescu, V. Ravi, D.E. Laughlin, M.E. McHenry, AIP Adv. 9, 035329 (2019)

P. Sliwa, K. Berent, J. Przewoznik, J. Cieslak, J. Alloys Compd. 814, 151757 (2020)

J. Cieslak, M. Calvo-Dahlborg, K. Berent, U. Dahlborg, J. Magn. Magn. Mater. 518, 167371 (2021)

J. Rodrìguez-Carvajal, Physica B 192, 55 (1993)

A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013)

S. Marik, K. Motla, M. Varghese, K.P. Sajilesh, D. Singh, Y. Breard, P. Boullay, R.P. Singh, Phys. Rev. Mater. 3, 060602 (2019)

G. Williamson, W. Hall, Acta Metall. 1, 22 (1953)

A. Błachowski, K. Komędera, K. Ruebenbauer, G. Cios, J. Zukrowski, R. Górnicki, J. Alloys Compd. 673, 420 (2016)

C. Kimball, W.D. Gerber, A. Arrott, J. Appl. Phys. 34, 1046 (1963)

H. Ohno, M. Mekata, J. Phys. Soc. Jpn. 31, 102 (1971)

H. Ohno, J. Phys. Soc. Jpn. 31, 92 (1971)

A. Tari, The Specific Heat of Matter at Low Temperatures, Imperial College Press, London 2003

S. Sharma, Solid State Commun. 149, 2207 (2009)

Q. Chen, B. Sundman, Acta Mater. 49, 947 (2001)