Magnetic Ordering and Local Atomic Environments in Na0.67Fe1-yMnyO2-Cathode Materials for Na-Ion Batteries

Main Article Content

R. Idczak
K. Walczak
R. Konieczny
P. Sobota
W. Nowak
V.H. Tran

Abstract

The Na0.67Fe1-yMnyO2 (y=0.5 and 0.8) samples were investigated using 57Fe Mössbauer spectroscopy at temperatures ranging from 4.5 to 700 K and superconducting quantum interference device magnetometer at temperatures ranging from 2 to 300 K. It was found that both materials order antiferromagnetically below Néel temperature TN = 9.5(5) K. Above this temperature, the samples exhibit a local-moment paramagnetism contributed from the Fe3+, Mn3+, and Mn4+ ions in high-spin state. The collected temperature-dependent Mössbauer spectra give clear evidence that they cannot be described using one component attributed to the iron atoms, which occupy only one crystallographic position in the hexagonal P63/mmc (P2-type) structure. The presence of the second component in all measured transmission Mössbauer spectroscopy spectra is ascribed to the highly distorted FeO6 octahedra, which are caused by a deficiency of Na atoms in the vicinity of the Mössbauer 57Fe probes. The Debye temperatures ΘD=554(29)K (for y=0.5) and 437(42) K (for y=0.8) were obtained.

Article Details

How to Cite
[1]
R. Idczak, K. Walczak, R. Konieczny, P. Sobota, W. Nowak, and V. Tran, “Magnetic Ordering and Local Atomic Environments in Na0.67Fe1-yMnyO2-Cathode Materials for Na-Ion Batteries”, Acta Phys. Pol. A, vol. 146, no. 3, p. 244, Nov. 2024, doi: 10.12693/APhysPolA.146.244.
Section
Special segment

References

B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011)

J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 46, 3529 (2017)

K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Adv. Energy Mater. 10, 2001310 (2020)

N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11, 512 (2012)

G. Singh, B. Acebedo, M.C. Cabanas, D. Shanmukaraj, M. Armand, T. Rojo, Electrochem. Commun. 37, 61 (2013)

W.M. Dose, N. Sharma, J.C. Pramudita, M. Avdeev, E. Gonzalo, T. Rojo, Chem. Mater. 30, 7503 (2018)

K. Walczak, K. Redel, R. Idczak et al., Energy Technol. 10, 2101105 (2022)

N. Greenwood, T. Gibb, Mössbauer Spectroscopy, John Wiley & Sons, 1971

P. Gütlich, E. Bill, A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer, Berlin 2010

E. Lee, D.E. Brown, E.E. Alp, Y. Ren, J. Lu, J.-J. Woo, C.S. Johnson, Chem. Mater. 27, 6755 (2015)

Z.M. Stadnik, P. Wang, H.-D. Wang, C.-H. Dong, M.-H. Fang, J. Alloys Compd. 561, 82 (2013)

M.A. Albedah, F. Nejadsattari, Z.M. Stadnik, J. Przewoźnik, J. Alloys Compd. 619, 839 (2015)

R. Idczak, V. Tran, B. Świątek-Tran, K. Walczak, W. Zając, J. Molenda, J. Magn. Magn. Mater. 491, 165602 (2019)

R. Idczak, B. Kaśków, R. Konieczny, J. Chojcan, Physica B 577, 411794 (2020)

T. Ichida, T. Shinjo, Y. Bando, T. Takada, J. Phys. Soc. Jpn. 29, 795 (1970)

T. Shirane, R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama, F. Izumi, Solid State Ionics 79, 227 (1995)

S.M. Dubiel, J. Magn. Magn. Mater. 561, 169688 (2022)

M.S. Henriques, D.I. Gorbunov, J.C. Waerenborgh, M. Pasturel, A.V. Andreev, M. Dušek, Y. Skourski, L. Havela, A.P. Gonçalves, Inorg. Chem. 54, 9646 (2015)

G. Filoti, M.D. Kuz'min, and J. Bartolomè, Phys. Rev. B 74, 134420 (2006)

R. Idczak, M. Babij, P. Sobota, W. Nowak, R. Konieczny, Z. Bukowski, V. Tran, J. Magn. Magn. Mater. 560, 169676 (2022)

A.J.F. Boyle, D.S.P. Bunbury, C. Edwards, H.E. Hall, Proc. Phys. Soc. 77, 129 (1961)

A. Heiming, K.H. Steinmetz, G. Vogl, Y. Yoshida, J. Phys. F Metal Phys. 18, 1491 (1988)