Cumulative Distribution Functions as Hysteresis Models

Main Article Content

M.F. de Campos
J.A. de Castro

Abstract

The cumulative distribution functions can be used as the basis for hysteresis models. Here it is described how, using only 3 parameters, including one representing the shape, hysteresis curves can be constructed using symmetric distribution functions. The model is useful in the interpretation of magnetic Barkhausen noise data. The model also has a clear physical meaning because it represents the distribution of coercivity inside the sample. An isotropic Stoner–Wohlfarth hysteresis was partially modelled by a three-parameter cumulative distribution function of Gaussian hysteresis for the 1st and 3rd quadrants. Asymmetric distributions will provide better hysteresis adjustment, but these are four-parameter models.

Article Details

How to Cite
[1]
M. de Campos and J. de Castro, “Cumulative Distribution Functions as Hysteresis Models”, Acta Phys. Pol. A, vol. 146, no. 1, p. 20, Jul. 2024, doi: 10.12693/APhysPolA.146.20.
Section
Special segment

References

K. Chwastek, M. Najgebauer, P. Jabłoński, T. Szczegielniak, D. Kusiak, B. Koprivica, M. Rosić, S. Divac, Appl. Sci. 13, 9134 (2023)

S. Gryś, M. Najgebauer, Measurement 174, 108962 (2021)

K. Chwastek, P. Gębara, A. Przybył, R. Gozdur, A.P.S. Baghel, B.S. Ram, Appl. Sci. 13, 12009 (2023)

A. Przybył, P. Gębara, R. Gozdur, K. Chwastek, Energies 15, 7951 (2022)

M.B. de Souza Dias, F.J.G. Landgraf, K. Chwastek, Energies 15, 1128 (2022)

K. Chwastek, Solid State Phenomena, 220-221, 652 (2015)

P. Jabłoński, M. Najgebauer, M. Bereźnicki, Energies 15, 2869 (2022)

J.A. Pérez-Benítez, J. Capó-Sánchez, J. Anglada-Rivera, L.R. Padovese, J. Magn. Magn. Mater. 288, 433 (2005)

M.F. de Campos, F.R.F. da Silva, J.F.C. Lins, E.F. Monlevade, M.A. Campos, J. Perez-Benitez, H. Goldenstein, L.R. Padovese, IEEE Trans. Magn. 49, 1305 (2013)

L.F.T. Costa, G. Gerhardt, F. Missell, M.F. De Campos, Acta Phys. Pol. A 136, 740 (2019)

H.J. Williams, W. Shockley, C. Kittel, Phys. Rev. 80, 1090 (1950)

S. Real Janasi, V.A. Lázaro-Colán, F.J.G. Landgraf, M.F. de Campos, Mater. Sci. Forum 775-776, 404 (2014)

M.F. de Campos, F.J.G. Landgraf, A.P. Tschiptschin, J. Magn. Magn. Mater. 226-230, 1536 (2001)

H. Lawton, K.H. Stewart, Proc. R. Soc. London A 193, 72 (1984)

F.A. Sampaio da Silva, D. Rodrigues, G.V. Concílio, J.A. de Castro, M.F. de Campos, Mater. Sci. Forum 899, 554 (2017)

P.G. Shewmon, Transformations in Metals, Indo American Books, 2007

M.J. Sablik, D.C. Jiles, IEEE Trans. Magn. 29, 2113 (1993)

M.F. de Campos, M.J. Sablik, F.J.G. Landgraf, T.K. Hirsch, R. Machado, R. Magnabosco, C.J. Gutierrez, A. Bandyopadhyay, J. Magn. Magn. Mater. 320, e377 (2008)

M.F. de Campos, Adv. Mater. Sci. 20, 16 (2020)

M.F. de Campos S.A. Romero, F.J.G. Landgraf, F.P. Missell, J. Phys. Conf. Ser. 303, 012049 (2011)

S.A. Romero, M.F. de Campos, J.A. de Castro, A.J. Moreira, F.J.G. Landgraf, J. Alloys Compd. 551, 312 (2013)

M.F. de Campos, S.A. Romero, L.M. da Silva, J.A. de Castro, ``Shape Anisotropy and Magnetic Texture Determination in Anisotropic and Isotropic Alnico Magnets'' JOM (2024)

M.F. de Campos, S.A. Romero, J.A. de Castro, J. Magn. Magn. Mater. 564, 170119 (2022)

G.A. Paterson, X. Zhao, M. Jackson, D. Heslop, Geochem. Geophys. Geosyst. 19, 1925 (2018)

M. Ahsanullah, M. Shakil, B.M. Golam Kibria, J. Pure Appl. Anal. 5, 63 (2019)

S. Kotz, T.J. Kozubowski, K. Podgórski, The Laplace Distribution and Generalizations, Birkhäuser, Basel, 2001

Y.M. Amer, Am. J. Appl. Math. Stat. 6, 239 (2018)

A.W. Bydałek, R. Stępnik, P. Migas, JOM 76, 548 (2024)

M.V. Jambunathan, Ann. Math. Stat. 25, 401 (1954)

P. Sebah, X. Gourdon, ``Introduction to the Gamma Function'', 2002