Piezotronic Activity Study by AFM Tip (Al) Top Electrode of Single ZnO Nanofiber Deposited on TiNx/c-Si Substrate
Main Article Content
Abstract
ZnO nanofibers were synthesized via a hydrothermal method. A single nanofiber was delicately transferred and deposited onto a TiNx thin film on a silicon substrate to facilitate the investigation of its piezotronic properties. An aluminum-coated atomic force microscope tip was employed in contact mode as a top nanoscale electrode to locally induce bending deformation in the individual ZnO nanofiber. The current–voltage (I–V) characteristics recorded between the top atomic force microscope tip electrode and the bottom TiNx surface exhibited rectifying behavior, indicative of the formation of a Schottky junction upon the application of a minimum bending force of 25 nN by the atomic force microscope tip. This force threshold was necessary to ensure adequate contact between the atomic force microscope probe and the ZnO nanofiber. However, upon exceeding the 25 nN bending force perpendicular to the c-axis, the forward current underwent a substantial reduction, eventually leading to complete suppression of the Schottky junction under further increments in the bending force. Finite element method simulations elucidated the presence of piezoelectric activity within the ZnO nanofiber, which was responsible for the observed attenuation in the forward current. The Cheung–Cheung method was employed to quantify the increase in barrier height at the Schottky junction as a function of the applied bending force.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
X. Yang, F. Liu, G. Duan, B. Cao, L. Zhang, CrystEngComm 19, 4983 (2017)
A. Tadji, A. Abderrahmane, M. Zerdali, S. Hamzaoui, Mater. Today Commun. 31, 103789 (2022)
L. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S.L. Suib, Chem. Mater. 21, 2875 (2009)
A. Tab, A. Abderrahmane, Y. Bakha, S. Hamzaoui, M. Zerdali, Optik 194, 1 (2019)
M. Zerdali, F. Bechiri, S. Hamzaoui, F.H. Teherani, D.J. Rogers, V.E. Sandana, P. Bove, P. Djemia, Y. Roussigné, Proc. SPIE 10105, 1010514 (2017)
X. Wang, W. Peng, C. Pan, Z.L. Wang, Semicond. Sci. Technol. 32, 043005 (2017)
Y. Dong, L.J. Brillson, J. Electron. Mater. 37, 743 (2008)
K. Ip, G.T. Thaler, H. Yang, S.Y. Han, Y. Li, D.P. Norton, S.J. Pearton, S. Jang, F. Ren, J. Cryst. Growth 287, 149 (2006)
A.J. Chiquito, C.A. Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo, E.R. Leite, J. Phys. Condens. Matter 24, 225303 (2012)
J.W. Lee, J.-H. Kim, S.K. Han, S.-K. Hong, J.Y. Lee, S.I. Hong, T. Yao, J. Cryst. Growth 312, 238 (2010)
V. Consonni, A.M. Lord, Nano Energy 83, 105789 (2021)
Y. Shao, J. Yoon, H. Kim, T. Lee, W. Lu, Appl. Surf. Sci. 301, 2 (2014)
L.J. Brillson, Y. Lu, J. Appl. Phys. 109, 121301 (2011)
R. Ghosh, Nano Energy 113, 108606 (2023)
J.L. Eduardo-River, N. Muñoz-Aguirre, G.J. Gutiérrez-Paredes, P.A. Tamayo-Meza, A.A. Zapata, L. Martínez-Pérez, Rev. Mex. Fis. 64, 655 (2018)
P. Feng, Q. Wan, T.H. Wang, Appl. Phys. Lett. 87, 21 (2005)
A. Schejn, M. Frégnaux, J.-M. Commenge, L. Balan, L. Falk, R. Schneider, Nanotechnology 25, 145606 (2014)
S. Park, S. Park, S. Lee, H.W. Kim, C. Lee, Sens. Actuators B 202, 840 (2014)
C.A. Dimitriadis, J.I. Lee, P. Patsalas, S. Logothetidis, D.H. Tassis, J. Brini, G. Kamarinos, J. Appl Phys. 85, 4238 (1999)
Y. Shao, J. Yoon, H. Kim, T. Lee, W. Lu, Appl. Surf. Sci. 301, 2 (2014)
L.J. Brillson, Y. Lu, J. Appl. Phys. 109, 12 (2011)
M. Zerdali, F. Bechiri I. Rahmoun, M. Adnane, T. Sahraoui, S. Hamzaoui, Eur. Phys. J. Appl. Phys. 61, 30101 (2013)
J. Yang, Z. Li, X. Xin, X. Gao, X. Yuan, Z. Wang, Z. Yu, X. Wang, J. Zhou, S. Dong, Sci. Adv. 5, 1 (2019)
J. Cardoso, F.F. Oliveira, M.P. Proenca, J. Ventura, Nanomaterials 8, 354 (2018)
R. Tao, R. Hinchet, G. Ardila, L. Montés, M. Mouis, in: 2014 10th Conf. on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble (France), 2014, p. 1
R. Hinchet, J. Ferreira, J. Keraudy, G. Ardila, E. Pauliac-Vaujour, M. Mouis, L. Montčs in: 2012 Int. Electron Devices Meeting, San Francisco (CA), 2012, p. 6.2.1
L. Zhu, Y. Xiang, Y. Liu, K. Geng, R. Yao, B. Li, Sens. Actuators A 341}, 113552 (2022)
R.S. Kammel, R.S. Sabry, J. Sci. Adv. Mater. Dev. 4, 420 (2019)
A. Khan, M. Hussain, O. Nur, M. Willande, J. Phys. D Appl. Phys. 47, 345102, 1 (2014)
Y. Zhang, Y. Liu, Z.L. Wang, Adv. Mater. 23, 3004 (2011)
F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)
Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai, S. Liu, L. Wang, Y. Qin, Nat. Commun. 13, 778 (2022)
Z.L. Wang, J. Song, Science 312, 242 (2006)
Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Nano Energy 14, 257 (2015)
F. Bechiri, M. Zerdali, I. Rahmoun, S. Hamzaoui, M. Adnane, T. Sahraoui, Eur. Phys. J. Appl. Phys. 61, 30102 (2013)
S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)
M. Stamataki, D. Tsamakis, J.P. Xanthakis, H.A. Ali, S. Esmaili-Sardari, A.A. Iliadis, Microelectron. Eng. 104, 95 (2013)
P. Keil, T. Fromling, A. Klein, J. Rodel, N. Novak, J. Appl. Phys. 121, 155701 (2017)
M.W. Allen, S.M. Durbin, Appl. Phys. Lett. 92, 122110 (2008)
W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, Z.L. Wang, ACS Nano 6, 3760 (2012)
X. Liao, X. Yan, P. Lin, S. Lu, Y. Tian, Y. Zhang, ACS Appl. Mater. Interfaces 7, 1602 (2015)
Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
B.H. Nguyen, X. Zhuang, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 346, 1074 (2018)
X. Xu, A. Potie R. Songmuang, J.W. Lee, B. Bercu, T. Baron, B. Salem, L. Montes, Nanotechnology 22, 105704 (2011)