Optimum Saturation Magnetization of Superparamagnetic Iron Oxide Nanoparticles for Versatile Applications

Main Article Content

O. Karaagac
C. Hasirci
H. Köçkar

Abstract

Due to their unique properties, magnetic nanoparticles are interesting for the fundamental study of materials science and their applications. Specifically, iron oxide nanoparticles have a wide range of applications, for example in electronic, environmental, and medical areas. In many applications, iron oxide nanoparticles with superparamagnetic behavior and high saturation magnetization are preferred since optimum magnetic properties provide better magnetic control over the nanoparticles. In the study, superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation under an inert atmosphere, and the impact of most effective parameters (reaction temperature and alkali concentration) on their structural and magnetic properties was investigated. The reaction temperature was changed from 30 to 90C, and then the alkali concentration was changed at a fixed reaction temperature. It was found that the saturation magnetization of the superparamagnetic iron oxide nanoparticles increased with the increase in reaction temperature, and the maximum saturation magnetization obtained was 67.9 emu/g with zero coercivity at 75C. It was also observed that the particle size increased as the reaction time increased. The saturation magnetization of the super-paramagnetic iron oxide nanoparticles synthesized using different alkali concentrations changed between 64.6 and 67.9 emu/g, and the particle size slightly decreased as the concentration decreased. The highest saturation magnetization (67.9 emu/g) with good crystallinity and relatively narrow size distribution was obtained at 75C and using the highest alkali concentration. The synthesized superparamagnetic iron oxide nanoparticles may be used in a variety of potential applications, such as the removal of pollutants from water, magnetic separation, magnetic resonance imaging, etc. 

Article Details

How to Cite
[1]
O. Karaagac, C. Hasirci, and H. Köçkar, “Optimum Saturation Magnetization of Superparamagnetic Iron Oxide Nanoparticles for Versatile Applications”, Acta Phys. Pol. A, vol. 146, no. 2, p. 154, Aug. 2024, doi: 10.12693/APhysPolA.146.154.
Section
Articles

References

T. Girardet, P. Venturini, H. Martinez, J.-C. Dupin, F. Cleymand, S. Fleutot, Appl. Sci. 12, 8127 (2022)

G.F. Stiufiuc, R.I. Stiufiuc, Appl. Sci. 14, 1623 (2024)

J.R. Vargas-Ortiz, C. Gonzalez, K. Esquivel, Processes 10, 2282 (2022)

B. Rezaei, P. Yari, S.M. Sanders, H. Wang, V.K. Chugh, S. Liang, S. Mostufa, K. Xu, J.-P. Wang, J. Goěmez-Pastora, K. Wu, Small 20, 2304848 (2024)

R. Wirecka, M.M. Marzec, M. Marciszko-Wiackowska, M. Lis, M. Gajewska, E. Trynkiewicz, D. Lachowicz, A. Bernasik, J. Mater. Chem. C 9, 10453 (2021)

M. Vaseem, F.A. Ghaffar, M.F. Farooqui, A. Shamim, Adv. Mater. Technol. 3, 1700242 (2018)

I.V. Martynenko, D. Kusić, F. Weigert et al., Anal. Chem. 91, 12661 (2019)

A. Hashim, I.R. Agool, K.J. Kadhim, J. Mater. Sci. Mater. Electron. 29, 10369 (2018)

P. Bartko, M. Rajňák, R. Cimbala, I. Kolcunová, K. Paulovičová, M. Timko, P. Kopčansk'y, J. Kurimský, Acta Phys. Pol. A 137, 970 (2020)

W. Wu, M. Jia, Z. Zhang, X. Chen, Q. Zhang, W. Zhang, P. Li, L. Chen, Ecotoxicol. Environ. Saf. 175, 243 (2019)

L. Zhang, Y. Zhang, Y. Tang, X. Li, X. Zhang, C. Li, S. Xu, Int. J. Environ. Anal. Chem. 98, 215 (2018)

Y. Teng, Y. Du, J. Shi, P.W.T. Pong, Curr. Appl. Phys. 20, 320 (2020)

M. Asgari, M. Soleymani, T. Miri, A. Barati, J. Mol. Liq. 292, 111367 (2019)

Z. Hedayatnasab, A. Dabbagh, F. Abnisa, W.M.A.W. Daud, Eur. Polym. J. 133, 109789 (2020)

N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahiri, D. Vashaee, L. Tayebi, Anal. Biochem. 519, 19 (2017)

S.M. Dadfar, D. Camozzi, M. Darguzyte et al., J. Nanobiotechnol. 18, 1 (2020)

K. Kaczmarek, T. Hornowski, R. Bielas, D. Żak, M. Timko, A. Józefczak, Acta Phys. Pol. A 133, 716 (2018)

P. Wu, Z. Xu, Ind. Eng. Chem. Res. 44, 816 (2005)

B.P. Branchaud, J. Am. Chem. Soc. 127, 14117 (2005)

N. Manousi, E. Rosenberg, E. Deliyanni, G.A. Zachariadis, V. Samanidou, Molecules 25, 1148 (2020)

O. Polit, M.S. Shakeri, Z. Swiatkowska-Warkocka, Acta Phys. Pol. A 145, 139 (2024)

M. Islam, A. Rahman, A. Alam, M. Rahman, O.T. Mefford, A. Ul-Hamid, J. Miah, H. Ahmad, ACS Omega 9, 20891 (2024)

S. García-Jimeno, J. Estelrich, Colloids Surf. A Physicochem. Eng. Aspects 420, 74 (2013)

P. Tartaj, in: Encyclopedia of Nanoscience and Nanotechnology, Ed. H.S. Nalwa, Vol. 6, American Scientific Publishers, Valencia (CA) 2003

M. Faraji, Y. Yamini, M. Rezaee, J. Iran Chem. Soc. 7, 130 (2010)

M. Banñobre-López, A. Teijeiro, J. Rivas, Rep. Pract. Oncol. Radiother. 18, 397 (2013)

X. Li, J. Wei, K.E. Aifantis, Y. Fan, Q. Feng, F.Z. Cui, F. Watari, J. Biomed. Mater. Res. A 104, 5 (2016)

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, J. Colloid Interface Sci. 314, 274 (2007)

W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3, 397 (2008)

K. Durak, M. Wiertel, Z. Surowiec, A. Miaskowski, Acta Phys. Pol. A 132, 1593 (2017)

N. Abu Yazid, Y.C. Joon, AIP Conf. Proc. 2124, 020019 (2019)

L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P. Jallet, J. Colloid Interface Sci. 212, 474 (1999)

G. Perez, M.P. Romero, E.B. Saitovitch, F.J. Litterst, J.F.D.F. Araujo, D.C. Bell, G. Solorzano, Solid State Sci. 106, 106295 (2020)

A.S. Omelyanchik, K.V. Sobolev, N.R. Shilov, N.V. Andreev, M.V. Gorshenkov, V.V. Rodionova, Nanobiotechnol. Rep. 18, 879 (2023)

H. Mohammadi, E. Nekobahr, J. Akhtari, M. Saeedi, J. Akbari, F. Fathi, Toxicol. Rep. 8, 331 (2021)

M.M. Khowdiary, H. Alsnani, M.S.A. Darwish, Inorganics 12, 47 (2024)

I. Khmara, M. Kubovcikova, M. Koneracka et al., Acta Phys. Pol. A 133, 704 (2018)

R. Massart, IEEE Trans. Magn. 17, 1247 (1981)

B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd Ed. Pearson Prentice Hall, New Jersey 2001

D. Maity, D.C. Agrawal, J. Magn. Magn. Mater. 308, 46 (2007)

R.M. Cornell, U. Schertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, VCH Publishers, Weinheim 2003}

R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O'Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Science 257, 219 (1992)

L. Zhang, G.C. Papaefthymiou, J.Y. Ying, J. Appl. Phys. 81, 6892 (1997)

C.P. Hunt, M.B. Moskowitz, S.K. Banerjee, Magnetic Properties of Rocks and Minerals, Rock Physics and Phase Relations: A Handbook of Physical Constants, Vol. 3, American Geophysical Union, Washington DC 1995

Z.L. Liu, H.B. Wang, Q.H. Lu, G.H. Du, L. Peng, Y.Q. Du, S.M. Zhang, K.L. Yao, J. Magn. Magn. Mater. 283, 258 (2004)

F. Abrinaei, M. Naseroleslami, Opt. Laser Technol. 106, 327 (2018)

M.F. Tai, C.W. Lai, S.B.A. Hamid, J. Nanomater. 2016, 8612505 (2016)