Pb2MgXO6 (X = W and Te) Double Perovskites: New Insights into Their Electronic, Elastic, Optic and Thermoelectric Properties

Main Article Content

M. Fodil
O. Baraka
A. Mokadem

Abstract

We carried out a theoretical study in which we explored the mechanical, optoelectronic, and thermoelectric properties of Pb2Mg(W/Te)O6 double perovskites with first-principles density functional approach and Boltzmann transport theory. The calculations were performed with the Perdew–Burke–Ernzerhof generalized gradient approximation and the Heyd–Scuseria–Ernzerhof functional (HSE06). Examination of structural stability is conducted through the analysis of the tolerance factor. The analysis of elastic constants within generalized gradient approximations reveals that both compounds satisfy the Born stability criteria and have excellent machinability. Moreover, they have a ductile nature with metallic bonding and a low Debye temperature. The examined materials possessed a significant effective mass in both compounds and direct bandgaps with values 2.4 eV (3.7 eV) for Pb2MgWO6 and 2.7 eV (4.2 eV) for Pb2MgTeO6 obtained within Perdew–Burke–Ernzerhof generalized gradient approximation (hybrid HSE06), respectively. Therefore, Pb2Mg(W/T)O6 demonstrates different photovoltaic capabilities with a low power conversion efficiency of ~10% employing HSE06, which are the appropriate attributes for the solar cell photoelectric absorption layers. Furthermore, the examined materials have excellent substantial thermopower, as well as figures of merit of 2.46 (2.67) and 2.26 (2.47) for Pb2MgTeO6 and Pb2MgWO6, respectively, ensuring the appropriate application for thermoelectric devices.

Article Details

How to Cite
[1]
M. Fodil, O. Baraka, and A. Mokadem, “Pb2MgXO6 (X = W and Te) Double Perovskites: New Insights into Their Electronic, Elastic, Optic and Thermoelectric Properties”, Acta Phys. Pol. A, vol. 146, no. 2, p. 143, Aug. 2024, doi: 10.12693/APhysPolA.146.143.
Section
Articles

References

E.W. Pickett, D.J. Singh, Phys. Rev. B 53, 1146 (1996)

K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

K.H. Hellwege, A.M. Hellwege, Magnetic and Other Properties of Oxides and Related Compounds, Springer, 1970

B.N. Parida, N. Panda, R. Padhee, R.K. Parida, Phase Transit. 91, 638 (2018)

P.N. Lekshmi, G.R. Raji, M. Vasundhara, M.R. Varma, S.S. Pillai, M. Valant, J. Mater. Chem. C 2013, 6565 (2013)

R. Nechache, C. Harnagea, L.-P. Carignan, O. Gautreau, L. Pintilie, M.P. Singh, D. Ménard, P. Fournier, M. Alexe, A. Pignolet, J. Appl. Phys. 105, 061621 (2009)

S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1 (2015)

J. Brant, Nat. Rev. Chem. 2, 393 (2018)

J. Kaczkowski, M. Pugaczowa-Michalska, I. Płowaś-Korus, J. Magn. Magn. Mater. 548, 168984 (2022)

D. Han, C. Feng, M.H. Du, T. Zhang, S. Wang, G. Tang, H. Ebert, J. Am. Chem. Soc. 143, 12369 (2021)

H.A. Evans, L. Mao, R. Seshadri, A.K. Cheetham, Annu. Rev. Mater. Res. 51, 351 (2021)

F.K. Patterson, C.W. Moeller, R. Ward, Inorg. Chem. 2, 196 (1963)

F. Zhao, Z. Yue, Z. Gui, L. Li, Jpn. J. App. Phys. 44, 8066 (2005)

M. Anderson, K. Greenwood, G. Taylor, K.R.B. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993)

P.W. Barnes, M.W. Lufaso, P.M. Woodward, Acta. Crystallog. B Struct. Sci. 62, 384 (2006)

W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. 12, 442 (2019)

Y. Tokura, Rep. Prog. Phys. 69, 797 (2006)

D.D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, A. Kumar, Phys. Rev. Lett. 85, 2549 (2000)

Z. Hiroi, J. Yamaura, K. Hattori, J. Phys. Soc. Jpn. 81, e0012 (2012)

K.W. Lee, W.E. Pickett, Phys. Rev. B 77, 115101 (2008)

N.S. Rogado, J. Li, W.A. Sleight, M.A. Subramaniam, Adv. Mater. 17, 2225 (2005)

J.P. Philipp, D. Reisinger, M. Schonecke, A. Marx, A. Erb, L. Alff, R. Gross, J. Klein, Appl. Phys Lett. 79, 3654 (2002)

M.A. Vries, A.C. Mclaughlin, J.W.G. Bos, Phys. Rev. Lett. 104, 177202 (2010)

G. Baldinozzi, P. Sciau, I. Moret, P.A. Buffat, Solid State Commun. 89, 441 (1994)

G. Baldinozzi, D. Grebille, P. Sciau, J.M. Kiat, J. Moret, J.F. Berar, J. Phys. Condens. Matter 10, 6461 (1998)

R. Caracas, X. Gonze, Phys. Rev. B 65, 184103 (2002)

R. Caracas, X. Gonze, Phys. Rev. B 71, 054101 (2005)

G. Baldinozzi, P.H. Sciau, Acta. Cryst. B 51, 668 (1995)

G. Baldinozzi, P. Sciau, P.A. Buffat, Solid State Commun. 86, 541 (1993)

P. Blaha, K. Schwarz, K.S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)

P. Hohenberg, W. Kohn, Phys. Rev. 136, e00B864 (1964)

M. Städele, J.A. Majewski, P. Vogl, Phys. Rev. Lett. 79, 2089 (1997)

J. Heyd, G.E. Scuseria, M. Ernzerho, J. Chem. Phys. 118, 8207 (2003)

M. Jamal, S.J. Asadabadi, I. Ahmad, H.A.R. Aliabad, Comput. Mater. Sci. 95, 592 (2014)

D. Singh, M. Sajjad, J.A. Larsson, R. Ahuja, Results Phys. 19, 103584 (2020)

V. Goldschmidt, Geochemistry, Oxford Universty Press, 1958

F.S. Galasso, Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon Press, London 1969}

W. Westerburg, O. Lang, C. Ritter, C. Felser, W. Tremel, G. Jakob, Solid State Commun. 122, 201 (2002)

F. Sania, S. Shafie, IOSR-JEEE 14, 51 (2019)

G. Volonakis, A. Haghighirad, R. Milot, W. Sio, M. Filip, B. Wenger, M. Johnston, L. Herz, H. Snaith, F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017)

R.D. Shannon, C.T. Prewitt, Acta. Cryst. B25, 925 (1969)

M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford 1956

A. Yakoubi, O.Baraka, B. Bouhafs, Results Phys. 2, 58 (2012)

S.F. Pugh, Lond. Edinb. Philos. Mag. J. Sci. 45, 823 (1954)

I.N. Frantsevich, F.F. Voronov, S.A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals, Naukova Dumka, Kiev 1982

Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metal. Hard Mater. 33, 93 (2012)

O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Metall. 18, 951 (1984)

G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, J. Phys. Chem. Lett. 4, 4213 (2013)

M. Sajjad, N. Singh, S. Sattar, S.D. Wolf, U. Schwingenschlogl, ACS. Appl. Energy Mater. 2, 3004 (2019)

D.R. Penn, Phys. Rev. 128, 2093 (1962)