Zero-Field Splitting Parameter of Mn2+ in Zinc Aluminate Single Crystals

Main Article Content

M. Bharati
V. Singh
R. Kripal

Abstract

A theoretical study of the crystal-field parameters and zero-field splitting parameter of Mn2+-doped zinc aluminate single crystals has been completed  with  the  use of  the perturbation theory  and  the superposition model. The theoretical value of the zero-field splitting parameter D agrees well with the experimental value.  This  validates the experimental outcome that Mn2+ ions substitute at  the  Zn2+  site  in  zinc  aluminate  single  crystal. Using the parameters of the crystal field and the crystal field analysis program, the optical spectra of Mn2+-doped zinc aluminate crystal are calculated. The calculated and experimental energy values agree with each other reasonably well. Thus, the theoretical approach supports the experiment.

Article Details

How to Cite
[1]
M. Bharati, V. Singh, and R. Kripal, “Zero-Field Splitting Parameter of Mn2+ in Zinc Aluminate Single Crystals”, Acta Phys. Pol. A, vol. 146, no. 2, p. 123, Aug. 2024, doi: 10.12693/APhysPolA.146.123.
Section
Articles

References

P. Gnutek, Z. Y. Yang, C. Rudowicz, J. Phys. Condens. Matter 21, 455402 (2009)

Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys. Condens. Matter 16, 3481 (2004)

C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001)

S.K. Misra in: Handbook of ESR, Vol. 2, Eds. C.P. Poole Jr., H.A. Farach, Springer, New York 1999, Ch. IX, p. 291

H. Anandlakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P.S. Rao, Pramana 62, 77 (2004)

C. Rudowicz, P. Gnutek, M. Acikgoz, Appl. Spectr. Rev. 54, 673 (2019)

S. Pandey, R. Kripal, A. K. Yadav, M. Açíkgöz, P. Gnutek, C. Rudowicz, J. Lumin. 230, 117548 (2020)

C. Rudowicz, M. Karbowiak, Coord. Chem. Rev. 287, 28 (2015)

I. Stefaniuk, Opto-Electronics Rev. 26, 81 (2018)

A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford 1970

D.J. Newman, B. Ng, Crystal Field Handbook, Cambridge University Press, Cambridge 2000

D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)

D.J. Newman, E. Siegel, J. Phys. C Solid State Phys. 9, 4285 (1976)

Y.Y. Yeung, D.J. Newman, J. Phys. C Solid State Phys. 21, 537 (1988)

Y.Y. Yeung, J. Phys. C Solid State Phys. 21, 2453 (1988)

S.K. Sampath, J.F. Cordaro, J. Am. Ceram. Soc. 81, 649 (1998)

R. Roesky, J. Weiguny, H. Bestgen, U. Dingerdissen, Appl. Catal. A General 176, 213 (1999)

S.K. Sampath, D.G. Kandive, R. Pandey, J. Phys. Condens. Matter 11, 3635 (1999)

H. Matsui, C.N. Xu, H. Tateyama, Appl. Phys. Lett. 78, 1068 (2001)

M.C. Marion, E. Garbowski, M. Primet, J. Chem. Soc. Faraday Trans. 11, 1795 (1991)

F. Le Peltier, P. Chaumette, J. Saussey, M.M. Bettahar, J.C. Lavalley, J. Mol. Catal. A 122, 131 (1997)

M. A. Valenzuela, G. Aguilar, P. Bosch, H. Armendariz, P. Salas, A. Montoya, Catal. Lett. 15, 179 (1992)

J. Wrzyszcz, M. Zawadzki, J. Trawczynski, H. Grabowska, W. Mista, Appl. Catal. A General 210, 263 (2001)

D. Jia, X.-J. Wang, E. van der Kolk, W.M. Yen, Opt. Commun. 204, 247 (2002)

M. García-Hipólito, J. Guzmán-Mendoza, E. Martínez, O. Alvarez-Fregoso, C. Falcony, Phys. Status Solidi (a) 201, 1510 (2004)

Z. Lou, J. Hao, Appl. Phys. A 80, 151 (2005)

S.F. Wang, F. Gu, M.K. Lü, X.F. Cheng, W.G. Zou, G.J. Zhou, S.M. Wang, Y.Y. Zhou, J. Alloys Compd. 394, 255 (2005)

B. Cheng, S. Qu, H. Zhou, Z. Wang, Nanotechnology 17, 2982 (2006)

V. Singh, R.P.S. Chakradhar, J.L. Rao, D.K. Kim, J. Lumin. 128, 394 (2008)

J. Popovic, B. Grzeta, B. Rakvin, E. Tkalcec, M. Vrankic, S. Kurajica, J. Alloys Compds. 509, 8487 (2011)

S.G. Menon, A.K. Kunti, S.D. Kulkarni, R. Kumar, M. Jain, D. Poelman, J.J. Joos, H.C. Swart, J. Lumin. 226, 117482 (2020)

C. Rudowicz, M. Açíkgöz, M. Karbowiak, Coord. Chem. Rev. 512, 215865 (2024)

M.G. Zhao, M.L. Du, G.Y. Sen, J. Phys. C Solid State Phys. 18, 3241 (1985)

W.L. Yu, Phys. Rev. B 39, 622 (1989)

Z.Y. Yang, J. Phys. Condens. Matter 12, 4091 (2000)

W.L. Yu, M.G. Zhao, Phys. Rev. B 37, 9254 (1988)

Z.Y. Yang, C. Rudowicz, Y.Y. Yeung, Physica B 348, 151 (2004)

C. Rudowicz, H.W.F. Sung, Physica B 300, 1 (2001)

C.J. Radnell, J.R. Pilbrow, S. Subramanian, M.T. Rogers, J. Chem. Phys. 62, 4948 (1975)

J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed., Wiley, New York 2007

W.L. Yu, M.G. Zhao, J. Phys. C Solid State Phys. 17, L525 (1984)

J.F. Clare, S.D. Devine, J. Phys. C Solid State Phys. 17, L581 (1984)

T.H. Yeom, S.H. Choh, M.L. Du, M.S. Jang, Phys. Rev. B 53, 3415 (1996)

W.L. Yu, M.G. Zhao, Phys. Stat. B 140, 203 (1987)

Y.Y. Yeung, in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis, Eds. M.G. Brik, N.M. Avram, Springer Heidelberg, New York 2013, Ch. 3, p. 95

Q. Wei, Acta Phys. Pol. A 118, 670 (2010)

Y.Y. Yeung, C. Rudowicz, J. Comput. Phys. 109, 150 (1993)

Y.Y. Yeung, C. Rudowicz, Comput. Chem. 16, 207 (1992)