New Insights on Critical Transitions of Single-Neuron Dynamics

Main Article Content

H. He
K. Zhang
H. Yan
J. Wang

Abstract

Many theoretical models depicting excitable cells stem from the Hodgkin–Huxley model. Over the past few decades, quantitative studies on its electrophysiology and nonlinear dynamics have yielded considerable progress. In this study, we employ a landscape and flux theory to statistically explore the global dynamic characteristics of the classical Hodgkin–Huxley neuron. We quantify the underlying landscape and flux to address global stability. Our results provide an intuitive understanding of a global picture of the dynamic system. By quantifying the average curl flux, we reveal that it serves as the dynamical origin for the emergence of a new state and a dynamical indicator for bifurcation. In addition, we quantitatively calculate the entropy production, identifying it as an essential thermodynamic indicator for bifurcation. The time asymmetry of the cross-correlations can be directly computed from existing experimental time series, offering a practical indicator for bifurcation analysis. This paper presents our findings and their implications for a better understanding of the behavior of excitable cells.

Article Details

How to Cite
[1]
H. He, K. Zhang, H. Yan, and J. Wang, “New Insights on Critical Transitions of Single-Neuron Dynamics”, Acta Phys. Pol. A, vol. 146, no. 1, p. 102, Aug. 2024, doi: 10.12693/APhysPolA.146.102.
Section
Regular segment

References

A.L. Hodgkin, A.F. Huxley, B. Katz, J. Physiol. 116, 424 (1952)

A.L. Hodgkin, A.F. Huxley, J. Physiol. 116, 449 (1952)

A.L. Hodgkin, A.F. Huxley, J. Physiol. 116, 473 (1952)

A.L. Hodgkin, A.F. Huxley, J. Physiol. 116, 497 (1952)

A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

M. Piccolino, Trends Neurosci. 25, 552 (2002)

B. Hassard, J. Theor. Biol. 71, 401 (1978)

J. Rinzel, R.N. Miller, Math. Biosci. 49, 27 (1980)

K. Aihara, G. Matsumoto, Biophys. J. 41, 87 (1983)

J. Guckenheimer, J.S. Labouriau, Bull. Math. Biol. 55, 937 (1993)

H. Fukai, S. Doi, T. Nomura, S. Sato, Biol. Cybern. 82, 215 (2000)

P. Rowat, Neural Comput. 19, 1215 (2007)

I. Bashkirtseva, L. Ryashko, Int. J. Bifurc. Chaos 29, 1950186 (2019)

C. Meunier, I. Segev, Trends Neurosci. 25, 558 (2002)

J.H. Goldwyn, E. Shea-Brown, PLoS Comput. Biol. 7, e1002247 (2011)

E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B Condens. Matter Complex Syst. 45, 391 (2005)

T. Takahata, S. Tanabe, K. Pakdaman, Biol. Cybern. 86, 403 (2002)

M. Güler, Neural Comput. 25, 2355 (2013)

J. Wang, L. Xu, E. Wang, Proc. Natl. Acad. Sci. 105, 12271 (2008)

J. Wang, Adv. Phys. 64, 1 (2015)

X. Fang, K. Kruse, T. Lu, J. Wang, Rev. Mod. Phys. 91, 045004 (2019)

H. Yan, L. Zhao, L. Hu, X. Wang, E. Wang, J. Wang, Proc. Natl. Acad. Sci. 110, E4185 (2013)

H. Yan, K. Zhang, J. Wang, Chinese Phys. B 25, 078702 (2016)

C. Li, E. Wang, J. Wang, Biophys. J. 101, 1335 (2011)

L. Xu, D. Patterson, A.C. Staver, S.A. Levin, J. Wang, Proc. Natl. Acad. Sci. 118, e2103779118 (2021)

K. Zhang, J. Wang, J. Phys. Chem. B 122, 5487 (2018)

X. Wang, Y. Wu, L. Xu, J. Wang, J. Chem. Phys. 159, 154105 (2023)

H. Yan, F. Zhang, J. Wang, Commun. Phys. 6, 110 (2023)

L. Xu, D. Patterson, S.A. Levin, J. Wang, Proc. Natl. Acad. Sci. 120, e2218663120 (2023)

H.C. Tuckwell, J. Jost, Physica A 388, 4115 (2009)

V. Baysal, Z. Saraç, E. Yilmaz, Nonlinear Dyn. 97, 1275 (2019)

Q. Kang, B.-Y. Huang, M.-C. Zhou, IEEE Trans. Cybern. 46, 2083 (2015)

A.S. Pikovsky J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Nat. Rev. Neurosci. 9, 292 (2008)

H. Risken, The Fokker-Planck Equation, Springer, Berlin 1996

W. Coffey Y.P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, Vol. 27, World Scientific, 2012

L. Xu, J. Wang, J. Phys. Chem. B 124, 2549 (2020)

F. Zhang, L. Xu, K. Zhang, E. Wang, J. Wang, J. Chem. Phys. 137, 065102 (2012)

P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT press, 2005

J. Wang, L. Chen, X. Fei, Chaos, Solit. Fractals 31, 247 (2007)

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 2003

R.J. Sacker, J. Differ. Equ. Appl. 15, 753 (2009)

T. Tateno, A. Harsch, H.P.C. Robinson, J. Neurophysiol. 92, 2283 (2004)

H. Qian E.L. Elson, Proc. Natl. Acad. Sci. 101, 2828 (2004)

Q. Liu, J. Wang, Proc. Natl. Acad. Sci. 117, 923 (2020)

C. Meisel, A. Klaus, C. Kuehn, D. Plenz, PLoS Comput. Biol. 11, e1004097 (2015)

D.A. Steyn-Ross, M.L. Steyn-Ross, M.T. Wilson, J.W. Sleigh, Phys. Rev. E 74, 051920 (2006)