Band-to-Band Tunneling Spectroscopy of Energy States in Ultrathin Silicon-on-Insulator p−n Diodes

Main Article Content

S. Masui
R. Asai
B.A. Rianto
D. Moraru

Abstract

This study investigates the possible impact of the dopant distribution on the electrical characteristics of silicon-on-insulator p−n diodes with varying nanostructure widths. The devices were fabricated using rapid thermal annealing and electron-beam lithography, with the p−n junction formed in a region codoped with boron (B) acceptors and phosphorus (P) donors. Electrical measurements conducted at low temperatures reveal significant differences in electronic transport behavior for different widths, especially within the negative differential conductance region. The findings suggest that the band-to-band tunneling is strongly influenced by the dopant (impurity) and/or defect levels in the depletion layer, with a narrower device showing a pronounced dependence on the substrate voltage.


 

Article Details

How to Cite
[1]
S. Masui, R. Asai, B. Rianto, and D. Moraru, “Band-to-Band Tunneling Spectroscopy of Energy States in Ultrathin Silicon-on-Insulator p−n Diodes”, Acta Phys. Pol. A, vol. 146, no. 4, p. 650, Nov. 2024, doi: 10.12693/APhysPolA.146.650.
Section
Special segment

References

G. Moore, Electronics Mag. 38, 114 (1965)

International Technology Roadmap for Semiconductors (ITRS), 2013

T. Shinada, S. Okamoto, T. Kobayashi, I. Ohdomari, Nature 437, 1128 (2005)

H. Sellier, G.P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, S. Biesemans, Phys. Rev. Lett. 97, 206805 (2006)

Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, Y. Takahashi, Appl. Phys. Lett. 90, 102106 (2007)

M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warchkow, L.C.L. Hollenberg, G. Klimeck, M.Y. Simmons, Nat. Nanotechnol. 7, 242 (2012)

M. Tabe, D. Moraru, M. Ligowski, M. Anwar, R. Jablonski, Y. Ono, T. Mizuno, Phys. Rev. Lett. 105, 016803 (2010)

D. Moraru, A. Samanta, L.T Anh, T. Mizuno, H. Mizuta, M. Tabe, Sci. Rep. 4, 6219 (2014)

A. Samanta, M. Muruganathan, M. Hori, Y. Ono, H. Mizuta, M. Tabe, D. Moraru, Appl. Phys. Lett. 110, 093107 (2017)

T.T. Jupalli, A. Debnath, G. Prabhudesai, K. Yamaguchi, P.J. Kumar, Y. Ono, D. Moraru, Appl. Phys. Express 15, 065003 (2022)

D. Moraru, M. Muruganathan, L.T. Anh, R. Nuryadi, H. Mizuta, M. Tabe, in: Proc. of the 15th Int. Conf. on Global Research and Education Inter-Academia, 2016, p. 95

M. Tabe, H.N. Tan, T. Mizuno, M. Muraganathan, L.T. Anh, H. Mizuta, R. Nuryadi, D. Moraru, Appl. Phys. Lett. 108, 093502 (2016)

G. Prabhudesai, M. Muruganathan, L.T. Anh, H. Mizuta, M. Hori, Y. Ono, M. Tabe, D. Moraru, Appl. Phys. Lett. 114, 243502 (2019)

L. Esaki, Phys. Rev. 109, 603 (1958)

L. Esaki, Y. Miyahara, Solid State Electron. 1, 13 (1960)

A.G. Chynoweth, R.A. Logan, D.E. Thomas, Phys. Rev. 125, 877 (1962)

S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981

D. Moraru, Int. J. Electr. Comput. Biomed. Eng. 1, 57 (2023)

R. Nowak, D. Moraru, T. Mizuno, R. Jablonski, M. Tabe, Appl. Phys. Lett. 102, 083109 (2013)

S. Purwiyanti, R. Nowak, D. Moraru, T. Mizuno, D. Hartanto, R. Jablonski, M. Tabe, Appl. Phys. Lett. 103, 243102 (2013)

M. Diarra, Y.M. Niquet, C. Delerue, G. Allan, Phys. Rev. B 75, 045301 (2007)

E. Hamid, D. Moraru, Y. Kuzuya, T. Mizuno, L.T. Anh, H. Mizuta, M. Tabe, Phys. Rev. B 87, 085420 (2013)