Preparation and Characterization of SiC Thin Films for 3H2O Steam Sensing
Main Article Content
Abstract
The objective of this study is to elaborate SiC thin film as a humidity sensing element and study its behavior towards tritiated water vapor, to apply it for radiation protection purposes. Silicon carbide was chosen as a material because of its remarkable properties and its capacity to be applied in harsh environments. The thin layers of SiC were deposited on the Si substrate by the magnetron sputtering technique. Their morphological, structural, and optical properties were examined by scanning electron microscopy, X-ray diffraction, and UV visible spectroscopy, respectively. The obtained thin films were examined by X-ray fluorescence and Auger electron spectrometry to get the elemental and chemical state information. The film's sensitivity was carried out by current–voltage measurements of SiC/pSi(100)/Cu Schottky diode structure before and after exposure to tritiated water steam for 10 and 38 days in an airtight container. The impedance measurements were performed in air, at room temperature, with frequencies ranging from 10-5 Hz to 0.1 Hz. The current showed an increase in forward bias after exposure to the super-heavy water vapor, which implies that the obtained amorphous SiC thin films could have an application as a tritiated water vapor sensing element at room temperature.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A.K. Burcu, ACS Appl. Electron. Mater. 4, 4797 (2022)
B. Shivananju, H.Y. Hoh, W. Yu, Q. Bao, Electon. Opt. Mater. 1, 379 (2019)
M. Ojovan, W. Lee S. Kalmykov, An Introduction to Nuclear Waste, 3rd ed., Elsevier, 2019, p. 145
People's Democratic Republic of Algeria, Executive Decree No. 11-125, 2011
H. Smith, 1990 International Commission on Radiological Protection, Annals of the ICRP, Vol. 21, Oxfordshire, Didcot 1990
IAEA Safety Standards, Occupational Radiation Protection, General Safety Guide, GSG-7, IAEA Publishing Section, Vienna 2018
Z. Franić, Arh. Hig. Rada Toksikol. 47, 359 (1996)
National Library of Medicine, PubChem Compound Summary for Tritium, 2023
S. Sanguanmith, J. Meesungnoen, C.R. Stuart, P. Causey, J.-P. Jay-Gerin, RSC Adv. 8, 2449 (2018)
J.A. Parker, M.D. Aspinall, C. Boxall, F.D. Cave, M.J. Joyce, Prog. Nucl. Energy 162, 104733 (2023)
J.R. DeVore, M.A. Buckner, Tritium Monitoring Techniques, 1996
E.J. Connolly, H.T. Phum, J. Groeneweg, P.M. Surro, P.J. French, in: 17th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS 2004), Maastricht, IEEE, 2004, p. 193
N. Wright, A. Horsfall, J. Phys. D Appl. Phys. 40, 6345 (2007)
J. Prakash, R. Venugopalan, B.M. Tripathi, S.K. Ghosh, J.K. Chakravartty, A.K. Tyagi, Prog. Solid State Chem. 43, 98 (2015)
A. Spetz, A. Arbab, I. Lundström, Sens. Actuators B: Chem. 15, 19 (1993)
S. Savage, H. Svenningstorp, L. Unéus, A. Kroutchinine, P. Tobias, L.G. Ekedahl, I. Lundström, C. Harris, A. Lloyd Spetz, Mater. Sci. Forum 353, 747 (2001)
G. Hunter, P. Neudeck, L.Y. Chen, D. Knight, C.C. Liu, Q.H. Wu, Mater. Sci. Forum 264, 1093 (1997)
W.M. Tang, J.P. Puxiang Lai, J.P. Xu, C.L. Chan, Sensors and Actuators A-physical 119, 63 (2005)
L. Sun, B. Wang, Y. Wang, Adv. Mater. Interfaces 5, 1701300 (2018)
A. Arbab, A. Spetz, I. Lundström, Sens. Actuators B Chem. 19, 562 (1994)
K. Katayama, M. Nishikawa, T. Takeishi, in: Proc. of the 19th IEEE/IPSS Symposium on Fusion Engineering (19th SOFE), IEEE, 2002, p. 164
G.L. Harris, Properties of Silicon Carbide, Inspec (1995), p. 282
X. Kerbiriou, Ph.D. Thesis, University of Orléans, 2006}
P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J. Microelectomech. Syst. 5, 270 (1996)
A. Ellison, J. Zhang, J. Peterson, A.W. Henry, Q. Wahab, J.P. Bergman, E. Janzén, Y.N. Makarov, A. Vorob'ev, A. Vehanen, Mater. Sci. Eng. B 61, 113 (1999)
C.W. Locke, A. Severino, F. La Via, M. Reyes, J. Register, S.E. Saddow, in: Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Ed. S.E. Saddow, Elsevier, Oxford 2012, p. 17
A. Oliveros, A. Guiseppi-Elie, S.E. Saddow, Biomed. Microdevices 15, 353 (2013)
H. Zhang, S. Yu, Electr. Opt. Mater. 7, 549 (2023)
D.J. Fray, J.M. Jafferson, in: Reference Module in Materials Science and Materials Engineering, 2016
L.M. Ferrari, S. Taccola, J. Barsotti, V. Mattoli, F. Greco, in: Organic Flexible Electronics, Eds. P. Cosseddu, M. Caironi, Woodhead Publishing, 2021 p. 437
Y. Laaziz, Ph.D. Thesis Tetouan, Abdelmalek Essaâdi University, 2015
R. Yousefi, B. Kamaluddina, M. Ghoranneviss, F. Hajakbari, Appl. Surf. Sci. 255, 6985 (2009)
C. Burggraf, B. Carriére, S. Goldsztaub, J. Appl. Phys. 11, 13 (1976)
R. Saleh, L. Munisa, W. Beyer, Thin Solid Films 426, 117 (2003)
J. Lamon, Compreh. Nucl. Mater. 2, 323 (2012)
G. Brauer, W. Anwand, F. Eichhorn et al., Appl. Surf. Sci. 252, 3342 (2006)
N. Galvão, M. Guerino, T. Campos, K. Grigorov, M. Fraga, B. Manzolli Rodrigues, R. Pessoa, J. Camus, M. Djouadi, H. Maciel, Micromachanics 10, 202 (2019)
S.E. Saddow, D. Alquier, J. Wang, F. LaVia, M. Fraga, SiC based Miniaturized Devices6, 2020
J. Kanungo, H. Saha, S. Basu, Sens. Actuators B Chem. 140, 65 (2009)