Analysis of Axisymmetric Generalized Stoneley Wave in Layered Elastic Solids

Main Article Content

B. Yu
H. Jing
J. Wang
Z. Bu
S.A.B. Da Fontoura

Abstract

The layered structures of elastic solids have wide applications in various fields of engineering related to natural phenomena, foundations, composite structures, and ultrasonic devices, among others. To have a better understanding of the propagation characteristics of axisymmetric generalized Stoneley waves in a layered structure, the displacement is constructed using the Helmholtz decomposition method with the cylindrical formulation, and then the displacement and stress in the layered structure are presented with potential functions in the wave equations. The transfer matrix method is used to derive the equations of the axisymmetric Stoneley waves in layered elastic solids in the cylindrical coordinates for solutions of wave velocity and amplitudes. With a new formulation in cylindrical coordinates, numerical examples are presented for the dispersion and displacement characteristics of the generalized Stoneley wave of layered solids. The results show that if a low-speed interlayer is added between two semi-infinite media where Stoneley waves do not exist, a wave similar to the Stoneley wave, with displacement decaying exponentially in the semi-infinite direction, can exist. We refer to the Stoneley-like waves that exist in structures with several interlayers between two semi-infinite media as generalized Stoneley waves.

Article Details

How to Cite
[1]
B. Yu, H. Jing, J. Wang, Z. Bu, and S. Da Fontoura, “Analysis of Axisymmetric Generalized Stoneley Wave in Layered Elastic Solids”, Acta Phys. Pol. A, vol. 145, no. 5, p. 247, May 2024, doi: 10.12693/APhysPolA.145.247.
Section
Articles

References

R.E. Sheriff, Encyclopedic Dictionary of Applied Geophysics Society of Exploration Geophysicists, 2002

R. Stoneley, Proc. R. Soc. Lond. A 106, 416 (1924)

S.V. Kuznetsov, Z. Angew. Math. Phys 71, 114 (2020)

O. Onen, Y.C. Uz, Phys. Proc. 70, 217 (2015)

S.V. Kuznetsov, Int. J. Mech. Mater. Design 17, 601 (2021)

J.G. Scholte, Geophys. Suppl. Mon. Not. R. Astron. Soc. 5, 120 (1947)

W.T. Thomson, J. Appl. Phys. 21, 89 (1950)

N.A. Haskell, Bull. the Seismol. Soc. Am. 43, 17 (1953)

J.W. Dunkin, Bull. the Seismol. Soc. Am. 55, 335 (1965)

L. Knopoff, Bull. the Seismol. Soc. Am. 54, 431 (1964)

C. Bian, J. Wang, B. Huang, L. Xie, L. Yi, L. Yuan, H. Li, Y. Tian, Phys. Scr. 96, 125272 (2021)

C. Bian, J. Wang, L. Xie, Y. Zhang, H. Li, Y. Tian, Arch. Appl. Mech. 92, 649 (2022)

Ji Wang, S. Wang, L. Xie, Y. Zhang, L. Yuan, J. Du, H. Zhang, Theor. Appl. Mech. Lett. 10, 120 (2020)

B. Xiao, C. Li, Chinese J. Eng. Geophys. 1, 38 (2004) (in Chinese)

Y. Chen, J. Liu, J. Wang, T. Maa J. Du, H. Li, Acta Phys. Pol. A 140, 105 (2021)

K.F. Graff, Wave Motion in Elastic Solids Dover Publications, 1975

C. Bian, B. Huang L. Xie, L. Yi, L. Yuan, J. Wang, Acta Phys. Pol. A 139, 124 (2021)