Controlling the Magnetic Properties of Fe-Based Composite Nanoparticles

Main Article Content

O. Polit
M.S. Shakeri
Z. Swiatkowska-Warkocka

Abstract

We present FexOy composite particles prepared by pulsed laser irradiation of α-Fe2O3 nanoparticles dispersed in ethyl acetate and irradiated using a laser beam in the ultraviolet range with a wavelength of 355 nm. The sizes of particles and composition were controlled by tuning the laser parameters, such as laser fluence and irradiation time. We showed the evolution of the composition through X-ray diffraction measurements. Reactive bond molecular dynamics simulation results show bond breaking/formation during the synthesizing process. We examined the magnetic properties of the particles and showed that coercivity can be changed by the composition of particles and by increasing or decreasing particle size. The choice of systems built of iron and iron oxides made it possible to introduce the exchange bias effect into a range of magnetic properties of synthesized particles.

Article Details

How to Cite
[1]
O. Polit, M. Shakeri, and Z. Swiatkowska-Warkocka, “Controlling the Magnetic Properties of Fe-Based Composite Nanoparticles”, Acta Phys. Pol. A, vol. 145, no. 2, p. 139, Mar. 2024, doi: 10.12693/APhysPolA.145.139.
Section
Articles

References

L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Particuology 30, 1 (2017)

A.M. Diez-Pascual, Polymers 11, 1790 (2019)

A. Suhasini, K.P.V. Kumar, T. Maiyalagan, Sci. Eng. Compos. Mater. 25, 189 (2018)

I. Fatimah, G. Fadillah, S.P. Yudha, Arab. J. Chem. 14, 103301 (2021)

A. Kay, I. Cesar, M. Gratzel, J. Am Chem Soc. 128, 15714 (2006)

C. Karunakaran, P. Anilkumarl, J. Mol. Catal. A Chem. 265, 153 (2007)

B.Y.Geng, J.Z. Ma, J.H. You, Cryst. Growth Des. 8, 1443 (2008)

M.C. Pereira, L.C.A. Oliveira, E. Murad, Clay Miner. 47, 285 (2012)

S.R.R. Pouran, A.A.A. Raman, W.M.A.W. Daud, J. Clean. Prod. 64, 24 (2014)

Y. Mu, F. Jia, Z. Ai, L. Zhang, Environ. Sci. Nano 4, 27 (2017)

C. Montferrand, L. Hu, I. Milosevic, V. Russier, D. Bonnin, L. Motte, A. Brioude, Y. Lalatonne, Acta Biomater. 9, 6150 (2013)

M. Busquets, A. Espargaró, R. Sabaté, J. Estelrich, Nanomaterials 5, 2231 (2015)

A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14, 15977 (2013)

F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

V. Amendola et al., Nanoscale 5, 5611 (2013)

J. Jakobi et al., Nanotechnology 22, 145601 (2011)

E. Gordon, A. Karabulin, V. Matyushenko, V. Sizov, I. Khodos, Phys. Chem. Chem. Phys. 16, 25229 (2014)

K.D. Malviya, K. Chattopadhyay, J. Phys. Chem. C 118, 13228 (2014)

V. Amendola, S. Scaramuzza, S. Agnoli, S. Polizzi, M. Meneghetti, Nanoscale 6, 1423 (2014)

Y. Ishikawa, T. Tsuji, S. Sakaki, N. Koshizaki, Prog. Mater. Sci. 131, 101004 (2023)

M.S. Shakeri, O. Polit, B. Grabowska-Polanowska, A. Pyatenko, K. Suchanek, M. Dulski, J. Gurgul, Z. Swiatkowska-Warkocka, Sci. Rep. 12, 11950 (2022)

M. Sadegh Shakeri, Z. Swiatkowska-Warkocka, O. Polit et al., Adv. Funct. Mater 33, 2304359 (2023)

H. Wang, L. Jia, L. Li, X.X. Li, Z. Swiatkowska-Warkocka, K. Kawaguchi, A. Pyatenko, N. Koshizaki, J. Mater. Chem. A 1, 692 (2013)

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, D. Golberg, Adv. Mater. 23, 1865 (2011)

Z. Swiatkowska-Warkocka, K. Kawaguchi, H.Q. Wang, Y. Katou, N. Koshizaki, Nanoscale Res. Lett. 6, 226 (2011)

H.Q. Wang, A. Pyatenko, K. Kawaguchi, X.Y. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem., Int. Ed 49, 6361 (2010)

H. Wang, K. Kawaguchi, A. Pyatenko, X. Li, Z. Swiatkowska-Warkocka, Y. Katou, N. Koshizaki, Chem. Eur. J. 18, 163 (2012)

Z. Swiatkowska-Warkocka, A. Pyatenko, Y. Shimizu, M. Perzanowski, A. Zarzycki, B.R. Jany, M. Marszalek, Nanomaterials 8, 790 (2018)

Z. Swiatkowska-Warkocka, A. Pyatenko, F. Krok, B.R. Jany, M. Marszalek, Sci. Rep. 5, 09849 (2015)

Z. Swiatkowska-Warkocka, A. Pyatenko, K. Koga, K. Kawaguchi, H. Wang, N. Koshizaki, J. Phys. Chem. C 121, 8177 (2017)

H. Fuse, N. Koshizaki, Y. Ishikawa, Z. Swiatkowska-Warkocka, Nanomaterials 9, 198 (2019)

Fullprof Software (accessed on 5 October 2023)

R. Rüger, M. Franchini, T. Trnka, A. Yakovlev, E. van Lenthe, P. Philipsen, T. van Vuren, B. Klumpers, T. Soini, AMS 2022.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands}

Ch. Zou, A. Van Duin, JOM 64, 1426 (2012)

K. Chenoweth, A.C.T. Van Duin, W.A. Goddard, J. Phys. Chem. A 112, 1040 (2008)

M. Feng, X.Z. Jiang, K.H. Luo, Proc. Combust. Inst. 37, 5473 (2019)

Q. Mao, A.C.T. Van Duin, K.H. Luo, Carbon 121, 380 (2017)

Ö. Özdemir , Geophys. J. Int. 141, 351 (2000)

I. Lyubutin, S. Lin, Y.V. Korzhetskiy, T.V. Dmitrieva, R.K. Chiang, J. Appl. Phys. 106, 034311 (2009)

M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, J. Alloys Compd. 792, 599 (2019)

J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, ACS Nano 3, 3749 (2009)

J. Ma, J. Lian, X. Duan, X. Liu, W. Zheng, J. Phys. Chem. C 114, 10671 (2010)

A.R. Goldman, E. Asenath-Smith, L.A. Estroff, APL Mater. 5, 104901 (2017)

M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001)

J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)