Prussian Blue Analogues Cubes in the Organic Polymer Electrospun Fibres

Main Article Content

A. Pacanowska
N.K. Chogondahalli Muniraju
W. Sas
M. Perzanowski
M. Mitura-Nowak
M. Fitta

Abstract

This report presents the preparation and characterization of a new composite containing Prussian blue analogues nanoparticles and poly(N-vinyl-2-pyrrolidone) (PVP). Nanoparticles of nickel hexacyanoferrate (NiHCFe) and nickel hexacyanochromate (NiHCCr) were synthesized by the citrate-assisted co-precipitation method. Basic characterization revealed uniform cubic particles with an average size of 238 nm (NiHCFe) and 80 nm (NiHCCr). In the next step, these nanocubes were incorporated into composite fibres using electrospinning technique. The resulting fibres exhibited distinctive colours, and scanning electron microscope imaging showed differences in fibre morphology between NiHCFe/PVP and NiHCCr/PVP composites. The obtained results indicate the successful synthesis and characterization of Prussian blue analogue nanoparticles, as well as their integration into composite fibres, opening up possibilities for diverse applications.

Article Details

How to Cite
[1]
A. Pacanowska, N. Chogondahalli Muniraju, W. Sas, M. Perzanowski, M. Mitura-Nowak, and M. Fitta, “Prussian Blue Analogues Cubes in the Organic Polymer Electrospun Fibres”, Acta Phys. Pol. A, vol. 145, no. 2, p. 133, Mar. 2024, doi: 10.12693/APhysPolA.145.133.
Section
Articles

References

L. Catala, T. Mallah, Coord. Chem Rev. 346, 32 (2017)

S. Ferlay, T. Mallah, R. Ouahés, P. Veillet, M. Verdaguer, Nature 378, 701 (1995)

W.R. Entley, G.S. Girolami, Science 268, 397 (1979)

S. Margadonna, K. Prassides, A.N. Fitch, J. Am. Chem. Soc. 126, 15390 (2004)

K.R. Dunbar, R.A. Heintz, Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives, 1996, p. 283

J. Milon, M.-C. Daniel, A. Kaiba, P. Guionneau, S. Brandés, J.-P. Sutter, J. Am. Chem. Soc. 129, 13872 (2007)

S.S. Kaye, J.R. Long, J. Am. Chem. Soc. 127, 6506 (2005)

O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 271, 49 (1996)

S. Mukherjee, R. Kotcherlakota, S. Haque, S. Das, S. Nuthi, D. Bhattacharya, K. Madhusudana, S. Chakravarty, R. Sistla, C.R. Patra, ACS Biomater. Sci. Eng. 6, 690 (2020)

C.R. Patra, Nanomedicine 11, 569 (2016)

R. Koncki, Crit. Rev. Anal. Chem. 32, 79 (2002)

B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, Y. Jiang, IScience 3, 110 (2018)

L. Peng, L. Guo, J. Li, W. Zhang, B. Shi, X. Liao, Sep. Purif. Technol. 307, 122858 (2023)

F. Chen, S. Zhang, R. Guo, B. Ma, Y. Xiong, H. Luo, Y. Cheng, X. Wang, R. Gong, Compos. B Eng. 224, 109161 (2021)

J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298 (2019)

S. Keßler, G. González-Rubio, E.R. Reinalter, M. Kovermann, H. Cölfen, Chem. Commun. 56, 14439 (2020)

N. Qureshi, J. Appl. Crystallogr. 52, 175 (2019)

A. Boultif, D. Louër, J. Appl. Crystallogr. 37, 724 (2004)

T. Uemura, S. Kitagawa, J. Am. Chem. Soc. 125, 7814 (2003)

M.A. Ahmed, R.M. Khafagy, S.T. Bishay, N.M. Saleh, J. Alloys Compd. 578, 121 (2013)

M.T. Razzak, Zainuddin, Erizal, S.P. Dewi, H. Lely, E. Taty, Sukirno, Radiat. Phys. Chem. 55, 153 (1999)