Magnetoelastic Effect in Perovskite Orthochromite HoCrO3

Main Article Content

K. Komędera
N.K. Chogondahalli Muniraju

Abstract

It is well established that many material properties, such as multiferroicity, magnetoresistance, or magnetoelectricity, emerge from strong interactions of spins and lattice (phonons). An in-depth understanding of spin–phonon coupling is key to understanding these properties. We demonstrate strong spin–phonon coupling in HoCrO3 using powder X-ray diffraction measurements. Our investigations confirm magnetoelastic effects below antiferromagnetic phase transition, TN ≈ 142 K. The lattice parameters and unit cell volume decrease normally with temperature up to ~ TN, but decrease anomalously below TN. By fitting the background thermal expansion for a non-magnetic lattice using the Debye–Grüneisen equation, we determined the lattice strain  ΔVM due to the magnetoelastic effects as a function of temperature. We have also established that the lattice strain due to the magnetoelastic effect in HoCrO3 couples with the square of the ordered magnetic moment of the Cr3+ ion.

Article Details

How to Cite
[1]
K. Komędera and N. Chogondahalli Muniraju, “Magnetoelastic Effect in Perovskite Orthochromite HoCrO3”, Acta Phys. Pol. A, vol. 145, no. 2, p. 128, Feb. 2024, doi: 10.12693/APhysPolA.145.128.
Section
Articles

References

J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmare, C.N.R. Rao, J. Mater. Chem. 17, 42 (2007)

B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan, Phys. Rev. B 86, 214409 (2012)

K.R.S. Preethi Meher, A. Wahl, A. Maignan, C. Martin, O.I. Lebedev, Phys. Rev. B 89, 144401 (2014)

S. Geller, E.A. Wood, Acta Crystallogr. 9, 563 (1956)

E. Bertaut, J. Mareschal, G. De Vries, R. Aleonard, R. Pauthenet, J. Rebouillat, V. Zarubicka, IEEE Trans. Magn. 2, 453 (1966)

E.F. Bertaut, J. Mareschal, Solid State Commun. 5, 93 (1967)

P. Pataud, J. Sivardiere, J. Phys. 31, 803 (1970)

N.K. Chogondahalli Muniraju, Ph.D. Thesis, Forschungszentrum Juelich GmbH and RWTH Aachen University, 2012

S. Yin, M.S. Seehra, C.J. Guild, S.L. Suib, N. Poudel, B. Lorenz, M. Jain, Phys. Rev. B 95, 184421 (2017)

C.M.N. Kumar, Y. Xiao, H.S. Nair, J. Voigt, B. Schmitz, T. Chatterji, N.H. Jalarvo, Th. Bruckel, J. Phys. Condens. Matter 28, 476001 (2016)

N. Qureshi, J. Appl. Crystallogr. 52, 175 (2019)

R.M. Hornreich, B.M. Wanklyn, I. Yaeger, Inter. J. Magn. 2, 77 (1972)

T. Chatterji, B. Ouladdiaf, D. Bhattacharya, J. Phys. Condens. Matter 21, 306001 (2009)

F. Sayetat, P. Fertey, M. Kessler, J. Appl. Crystallogr. 31, 121 (1998)

D.C. Wallace, Thermodynamics of crystals, Dover Publications, New York 1998

A.V. Andreev, Handbook of Magnetic Materials, Vol. 8, Elsevier, Amsterdam 1995