Magnetic Properties of the Thin Films of Prussian Blue Analogues Obtained by Ion-Exchange Synthesis

Main Article Content

W. Sas
A. Pacanowska
M. Fitta

Abstract

The Prussian blue analogues attract great attention due to their interesting properties and tunability. The cyanido bridging ligands allow for effective magnetic coupling. Due to the highly symmetrical structure of the Prussian blue analogue, its properties can be tuned by changing the metal centres involved in the cyano-bridging. Herein, a study of a new dimensionally-reduced system based on nickel hexacyanoferrate/chromate is presented. Thin films were obtained by ion-exchange synthesis. The primary aim of this work was to tune the physical properties of Prussian blue analogues by adapting the strategy of incorporating the three types of metal ions. A comprehensive analysis of the magnetic properties of the resulting compound and a detailed investigation of the evolution of the material's microstructure induced by the change in its chemical composition is presented.

Article Details

How to Cite
[1]
W. Sas, A. Pacanowska, and M. Fitta, “Magnetic Properties of the Thin Films of Prussian Blue Analogues Obtained by Ion-Exchange Synthesis”, Acta Phys. Pol. A, vol. 145, no. 2, p. 109, Feb. 2024, doi: 10.12693/APhysPolA.145.109.
Section
Articles

References

S. Ferlay, T. Mallah, R. Ouahčs, P. Veillet, M. Verdaguer, Nature 378, 701 (1995)

J.M. Manriquez, G.T. Yee, R.S. McLean, A.J. Epstein, J.S. Miller, Science 252, 1415 (1991)

T. Yamamoto, Y. Umemura, O. Sato, Y. Einaga, Chem. Lett. 33, 500 (2004)

H. Tokoro, T. Matsuda, T. Nuida, Y. Moritomo, K. Ohoyama, E.D.L. Dangui, K. Boukheddaden, S. Ohkoshi, Chem. Mater. 20, 423 (2008)

E. Coronado, M.C. Giménez-López, G. Levchenko, F.M. Romero, V. García-Baonza, A. Milner, M. Paz-Pasternak, J. Am. Chem. Soc. 127, 4580 (2005)

M. Zentková, Z. Arnold, J. Kamarád, V. Kavečanský, M. Lukáčová, S. Matáš, M. Mihalik, Z. Mitróová, A. Zentko, J. Phys. Condens. Matter 19, 266217 (2007)

K.W. Chapman, P.J. Chupas, C.J. Kepert, J. Am. Chem. Soc. 128, 7009 (2006)

L. Zhang, T. Meng, B. Mao, D. Guo, J. Qin, M. Cao, RSC Adv. 7, 50812 (2017)

Q. Wang, N. Wang, S. He, J. Zhao, J. Fang, W. Shen, Dalt. Trans. 44, 12878 (2015)

Z. Pan, Z. He, J. Hou, L. Kong, Small 19, 2302788 (2023)

Y. Moritomo, M. Sarukura, H. Iwaizumi, I. Nagai, Batteries 9, 393 (2023)

M. Pyrasch, A. Toutianoush, W. Jin, J. Schnepf, B. Tieke, Chem. Mater. 15, 245 (2003)

E. Coronado, Nat. Rev. Mater. 5, 87 (2020)

Y. Huang, S. Ren, Appl. Mater. Today 22, 100886 (2021)

S. Ohkoshi, T. Iyoda, A. Fujishima, K. Hashimoto, Phys. Rev. B 56, 11642 (1997)

A. Kumar, S.M. Yusuf, L. Keller, J.V. Yakhmi, J.K. Srivastava, P.L. Paulose, Phys. Rev. B 75, 224419 (2007)

S. Ohkoshi, A. Fujishima, K. Hashimoto, J. Am. Chem. Soc. 120, 5349 (1998)

M. Mizuno, S.I. Ohkoshi, K. Hashimoto, Adv. Mater. 12, 1955 (2000)

M. Yamada, M. Arai, M. Kurihara, M. Sakamoto, M. Miyake, J. Am. Chem. Soc. 126, 9482 (2004)

M. Fitta, H. Prima-Garcia, P. Czaja, T. Korzeniak, M. Krupiński, M. Wojtyniak, M. Bałanda, RSC Adv. 7, 1382 (2017)

D.M. Pajerowski, J.E. Gardner, D.R. Talham, M.W. Meisel, New J. Chem. 35, 1320 (2011)