Entanglement and Absorbing State Transitions in (d+1)-Dimensional Stabilizer Circuits
Main Article Content
Abstract
We study the influence of feedback operations on the dynamics of (d+1)-dimensional monitored random quantum circuit. Competition between unitary dynamics and measurements leads to an entanglement phase transition, while feedback steers the dynamics towards an absorbing state, yielding an absorbing state phase transition. Based on previous results in one spatial dimension (Phys. Rev. Lett. 130, 120402 (2023)), we discuss the interplay between the two types of transitions for d ≥ 2 in the presence of (i) short-range feedback operations or (ii) additional global control operations. In both cases, the absorbing state transition belongs to the d-dimensional directed percolation universality class. In contrast, the entanglement transition depends on the feedback operation type and reveals dynamics' inequivalent features. The entanglement and absorbing state phase transition remain separated for short-range feedback operations. When global control operations are applied, we find the two critical points coinciding; nevertheless, the universality class may still differ, depending on the choice of control operation.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
J. Fraxanet, T. Salamon, M. Lewenstein, The Coming Decades of Quantum Simulation, arXiv:2204.08905, 2022
J. Preskill, Quantum 2, 79 (2018)
K.J. Ferris, A.J. Rasmusson, N.T. Bronn, O. Lanes, Quantum Simulation on Noisy Superconducting Quantum Computers, arXiv:2209.02795, 2022
H. Carmichael, An open systems approach to quantum optics (Springer, Berlin, Germany, 1993)
J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)
K. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)
H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press (Cambridge, UK), 2009)
H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press (Oxford, UK), 2002)
X. Cao, A. Tilloy, A.D. Luca, SciPost Phys. 7, 024 (2019)
B. Skinner, J. Ruhman, A. Nahum, Phys. Rev. X 9, 031009 (2019)
Y. Li, X. Chen, M.P.A. Fisher, Phys. Rev. B 98, 205136 (2018)
Y. Li, X. Chen, M.P.A. Fisher, Phys. Rev. B 100, 134306 (2019)
A. Chan, R.M. Nandkishore, M. Pretko, G. Smith, Phys. Rev. B 99, 224307 (2019)
P. Sierant, X. Turkeshi, Phys. Rev. Lett. 128, 130605 (2022)
J.M. Koh, S.-N. Sun, M. Motta, A.J. Minnich, Experimental Realization of a Measurement-Induced Entanglement Phase Transition on a Superconducting Quantum Processor, arXiv:2203.04338, 2022
M.P.A. Fisher, V. Khemani, A. Nahum, S. Vijay, Random Quantum Circuits, arXiv:2207.14280, 2022
A.C. Potter, R. Vasseur, Entanglement dynamics in hybrid quantum circuits, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, H. Johannesson (Springer, Cham, 2022) pp. 211-249
O. Lunt, J. Richter, A. Pal, Quantum simulation using noisy unitary circuits and measurements, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer, Cham, 2022) pp. 251-284
R. Vasseur, A.C. Potter, Y.-Z. You, A.W.W. Ludwig, Phys. Rev. B 100, 134203 (2019)
C.-M. Jian, Y.-Z. You, R. Vasseur, A.W.W. Ludwig, Phys. Rev. B 101, 104302 (2020)
A. Nahum, S. Roy, B. Skinner, J. Ruhman, PRX Quantum 2, 010352 (2021)
Y. Bao, S. Choi, E. Altman, Phys. Rev. B 101, 104301 (2020)
M.J. Gullans, D.A. Huse, Phys. Rev. X 10, 041020 (2020)
S.J. Garratt, E. Altman, Probing postmeasurement entanglement without post selection, 2023
S.J. Garratt, Z. Weinstein, E. Altman, Phys. Rev. X 13, 021026 (2023)
J.C. Hoke, M. Ippoliti, D. Abanin et al., Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor, arXiv:2303.04792 (2023)
C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas, M. Cetina, A.V. Gorshkov, M.J. Gullans, D.A. Huse, C. Monroe, Nature Physics 18, 760 (2022)
M. Ippoliti, V. Khemani, Phys. Rev. Lett. 126, 060501 (2021)
G. Passarelli, X. Turkeshi, A. Russomanno, P. Lucignano, M. Schirò, R. Fazio, Post-selection-free measurement-induced phase transition in driven atomic gases with collective decay, arXiv:2306.00841, 2023
A.J. Friedman, O. Hart, R. Nandkishore, Measurement-induced phases of matter require feedback, arXiv:2210.07256, 2023
S. Roy, J.T. Chalker, I.V. Gornyi, Y. Gefen, Phys. Rev. Res. 2, 033347 (2020)
M. McGinley, S. Roy, S.A. Parameswaran, Phys. Rev. Lett. 129, 090404 (2022)
M. Buchhold, T. Müller, S. Diehl, Revealing measurement-induced phase transitions by pre-selection, arXiv:2208.10506, 2022
T. Iadecola, S. Ganeshan, J.H. Pixley, J.H. Wilson, Phys. Rev. Lett. 131, 060403 (2023)
N. O'Dea, A. Morningstar, S. Gopalakrishnan, V. Khemani, Entanglement and Absorbing-State Transitions in Interactive Quantum Dynamics, arXiv:2211.12526, 2022
V. Ravindranath, Y. Han, Z.-C. Yang, X. Chen, Entanglement Steering in Adaptive Circuits with Feedback, arXiv:2211.05162, 2022
V. Ravindranath, Z.-C. Yang, X. Chen, Free fermions under adaptive quantum dynamics, arXiv:2306.16595, 2023
N. Makki, N. Lang, H.P. Büchler, Absorbing state phase transition with clifford circuits, arXiv:2303.05317, 2023
P. Sierant, X. Turkeshi, Phys. Rev. Lett. 130, 120402 (2023)
L. Piroli, Y. Li, R. Vasseur, A. Nahum, Phys. Rev. B 107, 224303 (2023)
U. Schollwöck, Annals of Physics 326, 96 (2011)
S. Aaronson, D. Gottesman, Phys. Rev. A 70, 052328 (2004)
C. Gidney, Quantum 5, 497 (2021)
X. Turkeshi, R. Fazio, M. Dalmonte, Phys. Rev. B 102, 014315 (2020)
P. Sierant, M. Schirò, M. Lewenstein, X. Turkeshi, Phys. Rev. B 106, 214316 (2022)
O. Lunt, M. Szyniszewski, A. Pal, Phys. Rev. B 104, 155111 (2021)
P. Sierant, M. Schirò, M. Lewenstein, X. Turkeshi, Entanglement growth and minimal membranes in (d+1) random unitary circuits, arXiv:2306.04764, (2023)
D. Andrèn, L. Hellström, K. Markström, Adv. Appl. Math. 39, 428 (2007)
M.R. Albrecht, G.V. Bard, C. Pernet, Efficient Dense Gaussian Elimination over the Finite Field with Two Elements, arXiv:1111.6549, 2011
E. Bertolazzi, A. Rimoldi, J. Comput. Appl. Math. 260, 519 (2014)
M.A. Muñoz, R. Dickman, A. Vespignani, S. Zapperi, Phys. Rev. E 59, 6175 (1999)
H. Hinrichsen, Advances in Physics 49, 815 (2000)
M. Henkel, Non-equilibrium phase transitions (Springer, 2008)
P. Sierant, M. Schirò, M. Lewenstein, X. Turkeshi (in preparation)
A. Lavasani, Y. Alavirad, M. Barkeshli, Nature Phys. 17, 342 (2021)
A. Lavasani, Y. Alavirad, M. Barkeshli, Phys. Rev. Lett. 127, 235701 (2021)
G.-Y. Zhu, N. Tantivasadakarn, A. Vishwanath, S. Trebst, R. Verresen, Nishimori's cat: stable long-range entanglement from finite-depth unitaries and weak measurements, arXiv:2208.11136, 2022
S. Sang, T.H. Hsieh, Phys. Rev. Research 3, 023200 (2021)
J.Y. Lee, W. Ji, Z. Bi, M.P.A. Fisher, Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond, arXiv:2208.11699, 2022
K. Klocke, M. Buchhold, Phys. Rev. B 106, 104307 (2022)
G.-Y. Zhu, N. Tantivasadakarn, S. Trebst, Structured volume-law entanglement in an interacting, monitored majorana spin liquid, arXiv:2303.17627, (2023)
K. Klocke, M. Buchhold, Majorana loop models for measurement-only quantum circuits, arXiv:2305.18559, (2023)
D. Gross, S. Nezami, M. Walter, Communications in Mathematical Physics 385, 1325 (2021)
A. Hamma, R. Ionicioiu, P. Zanardi, Phys. Rev. A 71, 022315 (2005)
A. Nahum, J. Ruhman, S. Vijay, J. Haah, Phys. Rev. X 7, 031016 (2017)