The Role of the Branch Cut of the Logarithm in the Definition of the Spectral Determinant for Non-Self-Adjoint Operators

Main Article Content

J. Lipovský
T. Machácek

Abstract

The spectral determinant is usually defined using the spectral zeta function that is meromorphically continued to zero. In this definition, the complex logarithms of the eigenvalues appear. Hence, the notion of the spectral determinant depends on the way in which one chooses the branch cut in the definition of the logarithm. We give results for the non-self-adjoint operators that specify when the determinant can and cannot be defined and how its value differs depending on the choice of the branch cut.

Article Details

How to Cite
[1]
J. Lipovský and T. Machácek, “The Role of the Branch Cut of the Logarithm in the Definition of the Spectral Determinant for Non-Self-Adjoint Operators”, Acta Phys. Pol. A, vol. 144, no. 6, p. 462, Dec. 2023, doi: 10.12693/APhysPolA.144.462.
Section
Articles

References

S. Minakshisundaram, Å. Pleijel, Can. J. Math. 1, 242 (1949)

D.B. Ray, I.M. Singer, Adv. Math. 7, 145 (1971)

S. Levit, U. Smilansky, Proc. Am. Math. Soc. 65, 299 (1977)

F. Gesztesy, K. Kirsten, J. Funct. Anal. 276, 520 (2019)

C. Aldana, J.-B. Caillau, P. Freitas, J. Éc. Polytech. Math. 7, 803 (2020)

M. Bordag, B. Geyer, K. Kirsten, E. Elizalde, Commun. Math. Phys. 179, 215 (1996)

E. Aurell, P. Salomonson, Commun. Math. Phys. 165, 233 (1994)

P. Freitas, Math. Ann. 372, 1081 (2018)

A. Voros, Nuclear Physics B 165, 209 (1980)

G.V. Dunne, J. Phys. A: Math. Theor. 41, 304006 (2008)

D. Burghelea, L. Friedlander, T. Kappeler, Proc. Amer. Math. Soc. 123, 3027 (1995)

P. Freitas, J. Lipovský, Acta Phys. Pol. A 136, 817 (2019)

P. Freitas, J. Lipovský, J. Funct. Anal. 279, 108783 (2020)

J.R. Quine, S.H. Heydari, R.Y. Song, Trans. Am. Math. Soc. 338, 213 (1993)

W. Rudin, Real and complex analysis, 3rd ed., McGraw Hill, Singapore 1986, p. 483

L.V. Ahlfors, Complex analysis, 3rd ed., McGraw Hill, 1979, p. 336

A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York 1953

D. Borisov, P. Freitas, J. Diff. Eq. 247, 3028 (2009)