Transmission of a Phononic Superlattice Made of Dynamic Materials

Main Article Content

S. Garus
W. Sochacki
J. Garus
J. Rzącki
P. Vizureanu
A.V. Sandu

Abstract

In one-dimensional phononic crystals, as a result of multiple destructive interferences of a mechanical wave, the phononic band gap phenomenon occurs, i.e., the lack of propagation of a wave of a given frequency through the structure due to internal reflections at the layer boundary and destructive interference. In dynamic phononic crystals, the incident monochromatic mechanical wave at the boundary of the media does not propagate according to Fresnel's relations, but is transformed into a wave spectrum, which affects the phononic properties of the examined structures and allows them to be dynamically controlled. The paper analyzes the transmission and influence of the frequency of changes in the properties of the elements of the finite phononic structure described by sinusoidal functions on the propagation of mechanical waves.

Article Details

How to Cite
[1]
S. Garus, W. Sochacki, J. Garus, J. Rzącki, P. Vizureanu, and A. Sandu, “Transmission of a Phononic Superlattice Made of Dynamic Materials”, Acta Phys. Pol. A, vol. 144, no. 5, p. 317, Dec. 2023, doi: 10.12693/APhysPolA.144.317.
Section
Articles

References

X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Phys. Rev. Lett. 106, 084301 (2011)

R. Martínez-Sala, J. Sancho, J.V. Sánchez, V. Gómez, J. Llinares, F. Meseguer, Nature 378, 241 (1995)

M.S. Kushwaha, P. Halevi, L. Dobrzyński, B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993)

S. Garus, W. Sochacki, J. Appl. Math. Comput. Mech. 16, 17 (2017)

A. Sukhovich, L. Jing, J.H. Page, Phys. Rev. B 77, 014301 (2008)

Jin-Chen Hsu, Tsung-Tsong Wu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1169 (2006)

S. Garus, W. Sochacki, M. Bold, Eng. Mech. 2018, 229 (2018)

G. Wang, X. Wen, J. Wen, L. Shao, Y. Liu, Phys. Rev. Lett. 93, 154302 (2004)

X. Li, F. Wu, H. Hu, S. Zhong, Y. Liu, J. Phys. D Appl. Phys. 36, L15 (2003)

W-P. Yang, L-W. Chen, Smart Mater. Struct. 17, 015011 (2008)

M. Ruzzene, A. Baz, J. Vib. Acoust. 122, 151 (2000)

O. Thorp, M. Ruzzene, A. Baz, Smart Mater. Struct. 10, 979 (2001)

A. Singh, D.J. Pines, A. Baz, Smart Mater. Struct. 13, 689 (2004)

A. Baz , J. Vib. Acoust. 123, 472 (2001)

D.W. Wright, R.S.C. Cobbold, Smart Mater. Struct. 18, 015008 (2009)

E.S. Cassedy, Proc. IEEE 55, 1154 (1967)

C. Elachi, IEEE Trans. Antennas Propag. 20, 534 (1972)

J.H. Wu, T.H. Cheng, A.Q. Liu, Appl. Phys. Lett. 89, 263103 (2006)

Y. Tanaka, Y. Tomoyasu, S-I. Tamura, Phys. Rev. B 62, 7387 (2000)

X. Liu, D.A. McNamara, Int. J. Infrared Milli. Waves 28, 759 (2007)

Y. Wang, W. Song, E. Sun, R. Zhang, W. Cao, Physica E 60, 37 (2014)

D. Tarrazó-Serrano, S. Castiñeira-Ibáñez, E. Sánchez-Aparisi, A. Uris, C. Rubio, Appl. Sci. 8, 2634 (2018)

S. Garus, W. Sochacki, J. Garus, J. Rzącki, Acta Phys. Pol. A 142, 7 (2022)