Squeezed States Generation in a Three-Mode System of Nonlinear Quantum Oscillators
Main Article Content
Abstract
Three identical, interacting with each other nonlinear oscillators are considered. In addition, they are also externally driven by a coherent field of constant amplitude. The possibility of generating two-mode squeezed states is analyzed in this system. The two-mode principal squeeze variance is used to study the properties of the squeezed states of the system. The time evolution of this variance is analyzed, as well as the effect of the strength of the interaction between the oscillators and the damping strength on the generation of squeezed states.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)
W. Wasilewski, T. Fernholz, K. Jensen et al., Opt. Express 17, 14444 (2009)
T.J. Bartley, P.J.D. Crowley, A. Datta et al., Phys. Rev. A 87, 022313 (2013)
A. Furusawa, J.L. Sørensen, S.L. Braunstein et al., Science 282, 706 (1998)
B.J. Lawrie, P.D. Lett, A.M. Marino, R.C. Pooser, ACS Photonics 6, 1307 (2019)
A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier, Science 312, 83 (2006)
C. Weedbrook, S. Pirandola, R. García-Patrón et al., Rev. Mod. Phys. 84, 621 (2012)
J.K. Kalaga, A. Kowalewska-Kudłaszyk, W. Leoński, A. Barasiński, Phys. Rev. A 94, 032304 (2016)
W. Leoński, A. Kowalewska-Kudłaszyk, Progress in Optics, Vol. 56, ed. E. Wolf, Elsevier, 2011, p. 131
W. Leoński, R. Tanaś, Phys. Rev. A 49, R20 (1994)
A. Miranowicz, W. Leoński, J. Opt. B 39, 1683 (2006)
A. Lukš, V. Peřinová, J. Peřina, Opt. Commun. 67, 149 (1988)
N. Korolkova, J. Peřina, Opt. Commun. 136, 135 (1996)
G. Ariunbold, J. Peřina, Opt. Commun. 176, 149 (2000)