The Go-Martini Approach: Revisiting the Concept of Contact Maps and the Modelling of Protein Complexes

Main Article Content

L.F. Cofas-Vargas
R.A. Moreira
S. Poblete
M. Chwastyk
A.B. Poma

Abstract

We present a review of a series of contact maps for the determination of native interactions in proteins and nucleic acids based on a distance threshold. Such contact maps are mostly based on physical and chemical construction, and yet they are sensitive to some parameters (e.g., distances or atomic radii) and can neglect some key interactions. Furthermore, we also comment on a new class of contact maps that only requires geometric arguments. The contact map is a necessary ingredient to build a robust Go-Martini model for proteins and their complexes in the Martini 3 force field. We present the extension of a popular structure-based Go--like approach to the study of protein–sugar complexes, and the limitations of this approach are also discussed. The Go-Martini approach was first introduced by Poma et al. (J. Chem. Theory Comput. 13, 1366 (2017)) in Martini 2 force field, and recently, it has gained the status of gold standard for protein simulation undergoing conformational changes in Martini 3 force field. We discuss several studies that have provided support for this approach in the context of the biophysical community.

Article Details

How to Cite
[1]
L. Cofas-Vargas, R. Moreira, S. Poblete, M. Chwastyk, and A. Poma, “The Go-Martini Approach: Revisiting the Concept of Contact Maps and the Modelling of Protein Complexes”, Acta Phys. Pol. A, vol. 145, no. 3, p. S9, Jan. 2024, doi: 10.12693/APhysPolA.145.S9.
Section
Articles

References

A.B. Poma, M. Cieplak, P.E. Theodorakis, J. Chem. Theory Comput. 13, 1366 (2017)

P.C.T. Souza, R. Alessandri, J. Barnoud et al., Nat. Methods 18, 382 (2021)

J.A. Stevens, F. Grünewald, P.A.M. van Tilburg et al., Front Chem. 11, 1106495 (2023)

L. Casalino, A.C. Dommer, Z. Gaieb et al., Int. J. High Perform Comput. Appl. 35, 432 (2021)

M.R. Machado, E.E. Barrera, F. Klein, M. Sóńora, S. Silva, S. Pantano, J. Chem Theory Comput. 15, 2719 (2019)

K.M. Ocetkiewicz, C. Czaplewski, H. Krawczyk, A.G. Lipska, A. Liwo, J. Proficz, A.K. Sieradzan, P. Czarnul, Bioinformatics 39, btad391 (2023)

K. Wołek, Á Gómez-Sicilia, M. Cieplak, J. Chem Phys. 143, 243105 (2015)

J.I. Sułkowska, M. Cieplak, Biophys J. 95, 3174 (2008)

Y. Zhao, M. Chwastyk, M. Cieplak, J. Chem. Phys. 146, 225102 (2017)

Y. Zhao, M. Chwastyk, M. Cieplak, Sci. Rep. 7, 39851 (2017)

A.B. Poma, M.S. Li, P.E. Theodorakis, Phys. Chem. Chem. Phys. 20, 17020 (2018)

C.H. da Silveira, D.E.V. Pires, R.C. Minardi et al., Proteins 74, 727 (2009)

P.G. Wolynes, J.N. Onuchic, D. Thirumalai, Science 267, 1619 (1995)

J.K. Noel, P.C. Whitford, J.N. Onuchic, J. Phys. Chem. B 116, 8692 (2012)

A. Poupon, Curr. Opin. Struct. Biol. 14, 233 (2004)

F. Dupuis, J.-F. Sadoc, R. Jullien, B. Angelov, J.-P. Mornon, Bioinformatics 21, 1715 (2005)

F. Aurenhammer, R. Klein, D.-T. Lee, Voronoi Diagrams and Delaunay Triangulations World Scientific Publishing Company, 2013

V. Sobolev, A. Sorokine, J. Prilusky, E.E. Abola, M. Edelman, Bioinformatics 15, 327 (1999)

J. Tsai, R. Taylor, C. Chothia, M. Gerstein, J. Mol. Biol. 290, 253 (1999)

R.A. Moreira, H.V. Guzman, S. Boopathi, J.L. Baker, A.B. Poma, Materials 13, 5362 (2020)

M. Chwastyk, M. Cieplak, J. Phys. Chem. B 124, 11 (2020)

B.R.H. de Aquino, M. Chwastyk, Ł. Mioduszewski, M. Cieplak, Phys Rev Res. 2, (2020)

Ł. Mioduszewski, M. Cieplak, Phys. Chem. Chem. Phys. 20, 19057 (2018)

Ł. Mioduszewski, J. Bednarz, M. Chwastyk, M. Cieplak, Comput. Phys. Commun. 284, 108611 (2023)

C. Hyeon, D. Thirumalai, Biophys J. 92, 731 (2007)

N.A. Denesyuk, D. Thirumalai, J. Phys. Chem B. 117, 4901 (2013)

N.A. Denesyuk, D. Thirumalai, Nat Chem. 7, 793 (2015)

N. Hori, S. Takada, J. Chem. Theory Comput. 8, 3384 (2012)

T. Waleń, G. Chojnowski, P. Gierski, J.M. Bujnicki, Nucleic Acids Res. 42, e151 (2014)

M. Sarver, C.L. Zirbel, J. Stombaugh, A. Mokdad, N.B. Leontis, J. Math. Biol. 56, 215 (2008)

X.-J. Lu, H.J. Bussemaker, W.K. Olson Nucleic Acids Res. 43, e142 (2015)

L. Artzi, E.A. Bayer, S. Morais, Nat. Rev. Microbiol. 15, 83 (2017)

Y. Shida, T. Furukawa, W. Ogasawara, Biosci. Biotechnol. Biochem. 80, 1712 (2016)

T. Sztain, S.-H. Ahn, A.T. Bogetti et al., Nat. Chem. 13, 963 (2021)

A.B. Poma, M. Chwastyk, M. Cieplak, J. Phys. Chem. B. 119, 12028 (2015)

D. Reith, M. Pütz, F. Müller-Plathe, J. Comput Chem. 24, 1624 (2003)

R.C. Bernardi, I. Cann, K. Schulten, Biotechnol. Biofuels. 7, 83 (2014)

M.J. Abraham, T. Murtola, R. Schulz et al., SoftwareX 1-2, 19 (2015)

M.I. Mahmood, A.B. Poma, K.-I. Okazaki, Front Mol. Biosci. 8, 619381 (2021)

Z. Liu, R.A. Moreira, A. Dujmović et al., Nano Lett. 22, 179 (2022)

P.C. Kroon, F. Grunewald, J. Barnoud, M. van Tilburg, P.C.T. Souza, T.A. Wassenaar, S.J. Marrink, eLife 12, RP90627 (2023)

P.C.T. Souza, S. Thallmair, S.J. Marrink, R. Mera-Adasme, J. Phys. Chem. Lett. 10, 7740 (2019)

F. Fontana, F. Gelain, Nanoscale Adv. 2, 190 (2020)

P.S.F.C. Gomes, M. Forrester, M. Pace, D.E.B. Gomes, R.C. Bernardi, Front Chem. 11, 1107427 (2023)

A.B. Poma, H.V. Guzman, M.S. Li, P.E. Theodorakis, Beilstein J. Nanotechnol. 10, 500 (2019)

A.B. Poma, T.T.M. Thu, L.T.M. Tri, H.L. Nguyen, M.S. Li, J. Phys. Chem. B 125, 7628 (2021)

L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008)

X. Periole, M. Cavalli, S.-J. Marrink, M.A. Ceruso, J. Chem. Theory Comput. 5, 2531 (2009)

K.A. Wilson, L. Wang, Y.C. Lin, M.L. O'Mara, BBA Adv. 1, 100010 (2021)

H. Sun, B. Qiao, W. Choi et al., ACS Cent. Sci. 7, 2063 (2021)

S. Thallmair, P.A. Vainikka, S.J. Marrink, Biophys. J. 116, 1446 (2019)

F. Azadi-Chegeni, S. Thallmair, M.E. Ward et al., Biophys J. 121, 396 (2022)

C. Waltmann, C.E. Mills, J. Wang et al., Proc. Natl. Acad. Sci. USA 119, e2119509119 (2022)

R.A. Moreira, J.L. Baker, H.V. Guzman, A.B. Poma, Methods Mol. Biol. 2340, 357 (2022)

R.A. Moreira, S.A.L. Weber, A.B. Poma, Molecules 27, 976 (2022)

V. Lutsyk, P. Wolski, W. Plazinski, J. Chem. Theory Comput. 18, 5089 (2022)

F. Grünewald, M.H. Punt, E.E. Jefferys et al., J. Chem. Theory Comput. 18, 7555 (2022)

V. Thallmair, L. Schultz, W. Zhao, S.J. Marrink, D. Oliver, S. Thallmair, Sci Adv. 8, eabp9471 (2022)

R. Launay, E. Teppa, C. Martins et al., Int. J. Mol. Sci. 23, 10323 (2022)

J. Morstein, R. Shrestha, Q.N. Van et al., ACS Chem. Biol. 18} 2082 (2023)

M. Nemchinova, J. Melcr, T.A. Wassenaar, S.J. Marrink, A. Guskov, J. Chem. Inf. Model. 61, 2407 (2021)