Lattice Dynamics of Altermagnetic Ruthenium Oxide RuO2

Main Article Content

S. Basak
A. Ptok

Abstract

Altermagnetic ruthenium oxide RuO2 crystallizes with P42/mnm symmetry. Here, we discuss the lattice dynamics of this structure. We show and discuss the phonon dispersion and density of states. The phonon dispersion curves contain several Dirac nodal lines and highly degenerate Dirac points. We present the characteristic frequencies and their irreducible representations at the Γ point. Theoretically obtained frequencies of the Raman active modes nicely reproduce the ones reported experimentally.

Article Details

How to Cite
[1]
S. Basak and A. Ptok, “Lattice Dynamics of Altermagnetic Ruthenium Oxide RuO2”, Acta Phys. Pol. A, vol. 145, no. 2, p. 93, Mar. 2024, doi: 10.12693/APhysPolA.145.91.
Section
Articles

References

L. Smejkal, J. Sinova, T. Jungwirth, Phys. Rev. X 12, 031042 (2022)

L. Smejkal, J. Sinova, T. Jungwirth, Phys. Rev. X 12, 040501 (2022)

V. Gopalan, D.B. Litvin, Nat. Mater. 10, 376 (2011)

Y. Guo, H. Liu, O. Janson, I.C. Fulga, J. van den Brink, J.I. Facio, Mater. Today Phys. 32, 100991 (2023)

L. Šmejkal, R. González-Hernández, T. Jungwirth, J. Sinova, Sci. Adv. 6, eaaz8809 (2020)

J. Zhan, J. Li, W. Shi, X.-Q. Chen, Y. Sun, Phys. Rev. B 107, 224402 (2023)

A. Ptok, arXiv:2309.02421, 2023

O. Fedchenko, J. Minar, A. Akashdeep et al., arXiv:2306.02170, 2023

Z. Feng, X. Zhou, L. Šmejkal et al., Nat. Electron. 5, 735 (2022)

L. Šmejkal, A.H. MacDonald, J. Sinova, S. Nakatsuji, T. Jungwirth, Nat. Rev. Mater. 7, 482 (2022)

J.P. Ruf, H. Paik, N.J. Schreiber et al., Nat. Commun. 12, 59 (2021)

E. Torun, C.M. Fang, G.A. de Wijs, R.A. de Groot, J. Phys. Chem. C 117, 6353 (2013)

Q. Liang, A. Bieberle-Hütter, G. Brocks, J. Phys. Chem. C 126, 1337 (2022)

D. Music, O. Kremer, G. Pernot, J.M. Schneider, Appl. Phys. Lett. 106, 063906 (2015)

P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

K. Parlinski, Z.Q. Li, Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

K.-H. Ahn, A. Hariki, K.-W. Lee, J. Kuneš, Phys. Rev. B 99, 184432 (2019)

Z.H. Zhu, J. Strempfer, R.R. Rao et al., Phys. Rev. Lett. 122, 017202 (2019)

M. Uchida, T. Nomoto, M. Musashi, R. Arita, M. Kawasaki, Phys. Rev. Lett. 125, 147001 (2020)

V. Jovic, R.J. Koch, S.K. Panda et al., Phys. Rev. B 98, 241101(R) (2018)

X. Xu, J. Jiang, W.J. Shi et al., Phys. Rev. B 99, 195106 (2019)

R. Loudon, Adv. Phys. 50, 813 (2001)

Y.M. Chen, A. Korotcov, H.P. Hsu, Y.S. Huang, D.S. Tsai, New J. Phys. 9, 130 (2007)

M.H. Kim, J.M. Baik, S.J. Lee, H.-Y. Shin, J. Lee, S. Yoon, G.D. Stucky, M. Moskovits, A.M. Wodtke, Appl. Phys. Lett. 96, 213108 (2010)

K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)