Theoretical Study on Horizontal-Type SAW Device with Dual Function of Sensing and Removal of Non-specific Binding

Main Article Content

C. Chen
Y. Wang
T. Ao
G. Hui

Abstract

In this paper, a horizontal-type surface acoustic wave device based on electrode width control interdigital transducer/polymethylmethacrylate/54° Y–X LiNbO3 is proposed to achieve the removal of non-specific binding particles by Rayleigh waves and the detection of meningococcus by Love waves. It is proved that the surface acoustic wave force plays a leading role in the removal of non-specific binding,  and  the  frequency  of  the  acoustic  wave  also  affects  the  removal  effect. The advantage of electrode width control interdigital transducer lies not only in overcoming the shortcomings of bidirectional and focused interdigital transducers, but also in improving  the  utilization  of  acoustic  waves  and  the  sensitivity  of  the  sensor. When non-specific binding particles are removed by Rayleigh  waves,  the  Love  wave  sensor  shows  a sensitivity of 330 Hz/(ng/µL) and a detection limit of 50 pg/µL for meningococcus.

Article Details

How to Cite
[1]
C. Chen, Y. Wang, T. Ao, and G. Hui, “Theoretical Study on Horizontal-Type SAW Device with Dual Function of Sensing and Removal of Non-specific Binding”, Acta Phys. Pol. A, vol. 145, no. 5, p. 281, May 2024, doi: 10.12693/APhysPolA.145.281.
Section
Articles

References

D.B. Go, M.Z. Atashbar, Z. Ramshani, H.C. Chang, Anal. Methods 9, 4112 (2017)

D.G. Prajapati, B. Kandasubramanian, Macromol. Chem. Phys. 220, 1800561 (2019)

M. Tak, V. Gupta, M. Tomar, Biosens. Bioelectron. 59, 200 (2014)

R. Gupta, M.O. Valappil, A. Sakthivel, A. Mathur, C.S. Pundir, K. Murugavel, J. Narang, S. Alwarappan, J. Electrochem. Soc. 167, 107501 (2020)

K. Gracie, E. Correa, S. Mabbott, J.A. Dougan, D. Graham, R. Goodacre, K. Faulds, Chem. Sci. 5, 1030 (2014)

M.T. Yaraki, A. Tukova, Y. Wang, Nanoscale 14, 15242 (2022)

G. Kaur, A. Paliwal, M. Tomar, V. Gupta, Biosens. Bioelectron. 78, 106 (2016)

A. Ramola, A. Marwaha, S. Singh, Appl. Phys. A 127, 643 (2021)

N. Chiba, S.Y. Murayama, M. Morozumi, E. Nakayama, T. Okada, K. Ubukata, E. Nakayama, T. Okada, S. Iwata, K. Sunakawa, J. Infect. Chemother. 15, 92 (2009)

L.D. Saravolatz, O. Manzor, N. VanderVelde, J. Pawlak, B. Belian, Clin. Infect. Dis. 36, 40 (2003)

X. Wang, M.J. Theodore, R. Mair et al., J. Clin. Microbiol. 50, 702 (2012)

J. Vuong, J.-M. Collard, M.J. Whaley et al., PLOS ONE 11, e0147765 (2016)

S. Li, Y. Zhang, J. Tian, W. Xu, Food Chem. 324, 126859 (2020)

V. Ruiz-Valdepenas Montiel, M.L. Gutiérrez, R.M. Torrente-Rodríguez, Anal. Chem. 89, 9474 (2017)

R. Monoŝìk, M. Streďanský, E. Ŝturdìk, Food Anal. Methods 6, 521 (2013)

H. Oh, C. Fu, K. Kim, K. Lee, Sensors 14, 21660 (2014)

D.W. Branch, S.M. Brozik, Biosens. Bioelectron. 19, 849 (2004)

S. Li, Y. Wan, Y. Su, C. Fan, V.R. Bhethanabotla, Biosens. Bioelectron. 95, 48 (2017)

J. Ji, Y. Pang, D. Li, X. Wang, Y. Xu, X. Mu, ACS Appl. Mater. Interfaces 12, 12417 (2020)

H. Wu, H. Zu, J.H.C. Wang, Q. M. Wang, Eur. Biophys. J. 48, 249 (2019)

W. Wei, W. Zhang, C. Li et al., Biosens. Bioelectron. 129, 231 (2019)

M. Bharati, L. Rana, R. Gupta, A. Sharma, P.K. Jha, M. Tomar, Anal. Chim. Acta 1249, 340929 (2023)

J. Nam, W.S. Jang, J. Kim, H. Lee, C.S. Lim, Biosens. Bioelectron. 142, 111496 (2019)

C.M. Gregory, J.V. Hatfield, S. Higgins, H. Iacovides, P.J. Vadgama, Sens. Actuators B 65, 305 (2000)

S.K.R.S. Sankaranarayanan, S. Cular, V.R. Bhethanabotla, B. Joseph, Phys. Rev. E 77, 066308 (2008)

B.G. Loh, D.R. Lee, K. Kwon, Appl. Phys. Lett. 89, 183505 (2006)

L.A. Kuznetsova, W.T. Coakley, Biosens. Bioelectron. 22, 1567 (2007)

S.K.R.S. Sankaranarayanan, R. Singh, V.R. Bhethanabotla, J. Appl. Phys. 108, 104507 (2010)

S. Li, V.R. Bhethanabotla, Sensors 19, 3876 (2019)

G. Clementi, G. Lombardi, S. Margueron et al., Mech. Syst. Signal Process. 149, 107171 (2021)

H. Wei, W. Geng, K. Bi et al., Micromachines 13, 329 (2022)

P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics Academic press, 2015

J. Lei, F. Cheng, Z. Guo, Appl. Math. Modell. 77, 456 (2020)

K.A. Naugolnykh, L.A. Ostrovsky, O.A. Sapozhnikov, M.F. Hamilton, J. Acoust. Soc. Am. 108, 14 (2000)

N. Nama, P.-H. Huang, T.J. Huang, F. Costanzo, Lab Chip 14, 2824 (2014)

D. Köster, SIAM J. Sci. Comput. 29, 2352 (2007)

J.T. Stuart, J. Fluid Mech. 24, 673 (1966)

K.A. Naugolnykh, L.A. Ostrovsky, O.A. Sapozhnikov, M.F. Hamilton, J. Acoust. Soc. Am. 108, 14 (2000)

D.G. Andrews, M.E. McIntyre, J. Fluid Mech. 89, 609 (1978)

O. Bühler, Waves and Mean Flows Cambridge University Press, 2014

P.B. Muller, R. Barnkob, M.J.H. Jensen, H. Bruus, Lab Chip 12, 4617 (2012)

J.N. Israelachvili, in: The Handbook of Surface Imaging and Visualization, CRC Press, 2022, p. 793

C. Xu J. Zhu, Chem. Eng. Sci. 60, 6529 (2005)

S.K. Sankaranarayanan, R. Singh, V.R. Bhethanabotla, J. Appl. Phys. 108, 104507 (2010)

T. Hasegawa K. Yosioka, J. Acoust. Soc. Am. 46, 1139 (1969)

R.M. Moroney, R.M. White R.T. Howe, Appl. Phys. Lett. 59, 774 (1991)

J. Vanneste, O. Bühler, Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 1779 (2011)

A.M. Hamad, H.M. Fahmy, W.M. Elshemey, Radiat. Phys. Chem. 166, 108522 (2020)

M. van der Flier, G. Stockhammer, G.J. Vonk et al., J. Infect. Dis. 183, 149 (2001)

H.L. Cai, Y. Yang, Y.H. Zhang, C.J. Zhou, C.R. Guo, J. Liu, T.L. Ren, Biosens. Mod. Phys. Lett. B 28, 1 (2014)