Localized States in a Periodic Potential with Harmonic Confinement

Main Article Content

P. Zin


We analyze the one-dimensional problem of a particle placed in periodic potential with additional harmonic trapping within tight-binding approximation. We find the eigenstates localized on the sides of the harmonic trapping potential. We show that the existence of these states leads to the freezing of the dipole oscillation observed in the experiment of Cataliotti et al., Science 293, 843 (2001).

Article Details

How to Cite
P. Zin, “Localized States in a Periodic Potential with Harmonic Confinement”, Acta Phys. Pol. A, vol. 145, no. 1, p. 28, Jan. 2024, doi: 10.12693/APhysPolA.145.28.


M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)

C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Science 291, 2386 (2001)

T. Berrada, S. van Frank, R. Bucker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, Nat. Commun. 4, 2077 (2013)

F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, M. Inguscio, Science 293, 843 (2001)

A. Smerzi, A. Trombettoni, P.G. Kevrekidis, A.R. Bishop, Phys. Rev. Lett. 89, 170402 (2002)

C. Menotti, A. Smerzi, A. Trombettoni, New J. Phys. 5, 112 (2003)

A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)

L. Pezze, L. Pitaevskii, A. Smerzi, S. Stringari, G. Modugno, E. DeMirandes, F. Ferlaino, H. Ott, G. Roati, M. Inguscio, Phys. Rev. Lett. 93, 120401 (2004)

V.A. Brazhnyi, V.V. Konotop, Phys. Rev. A 72, 033615 (2005)

M. Inguscio - private communication