Multi-Objective Optimization for Quantum Rectangular Cycle with Power, Efficiency and Efficient Power

Main Article Content

X. Xie
L. Chen
Y. Yin
S. Shi

Abstract

This paper establishes a quantum rectangular heat engine model by applying finite-time thermodynamics. The working medium is countless particles trapped in a one-dimensional infinite potential well. Taking into account  heat  leakage  between the system and the outside,  expressions  for  thermal  efficiency (η),  dimensionless power (P), and dimensionless efficient power (Wep) of quantum rectangular heat engine are derived, and its optimal performance is studied. System performance P, η, and Wep are optimized firstly by taking the width ratio of the potential well as the optimization variable. The outcomes show that the relationship curve between P and η is a loop-shaped curve. With an increase in heat leakage coefficient, the optimal design range of the quantum rectangular heat engine becomes smaller. The relationship curve between the efficient power and width ratio of the potential well is parabolic-like. The relationship curve between Wep and η is a loop-shaped curve. The efficiency of the quantum rectangular heat engine at Wep max operating point is greater than that at Pmax operating point. Secondly, multi-objective optimization is applied  with  ηP, and Wep as optimization objectives by applying NSGA-II, and the optimal design scheme is achieved by applying TOPSIS, LINMAP, and Shannon entropy decision-making approaches. The smallest deviation index inferred by the Shannon entropy approach is 0.0269. The design scheme is closest to the ideal scheme.

Article Details

How to Cite
[1]
X. Xie, L. Chen, Y. Yin, and S. Shi, “Multi-Objective Optimization for Quantum Rectangular Cycle with Power, Efficiency and Efficient Power”, Acta Phys. Pol. A, vol. 145, no. 1, p. 16, Jan. 2024, doi: 10.12693/APhysPolA.145.16.
Section
Articles

References

H. Terças, S. Ribeiro, M. Pezzutto, Y. Omar, Phys. Rev. E 95, 022135 (2017)

R. Kosloff, J. Chem. Phys. 150, 204105 (2019)

S. Singh, Int. J. Theor. Phys. 59, 2889 (2020)

R. Dann, R. Kosloff, New J. Phys. 25, 043019 (2023)

A. Fahriza, T.E.P. Sutantyo, Z. Abdullah, Eur. Phys. J. Plus 137, 1030 (2022)

N.M. Myers, O. Abah, S. Deffner, AVS Quantum Sci. 4, 027101 (2022)

H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

Y. Yin, F. Wu, L.G. Chen, J. Eng. Thermophys. 38, 2061 (2017)

Y. Yin, L.G. Chen, Wu, F. Phys. A 503, 58 (2018)

X.W. Liu, L.G. Chen, Y.L. Ge, J.H. Feng, F. Wu, J. Non-Equil. Thermody. 46, 61 (2021)

L.G. Chen, X.W. Liu, F. Wu, H.J. Feng, S.J. Xia, Phys. A 550, 124140 (2020)

L.G. Chen, Z.W. Meng, Y.L. Ge, F. Wu, Entropy23, 536 (2021)

B. Andresen, Finite-Time Thermodynamics, University of Copenhagen, Copenhagen (Denmark) 1983

L.G. Chen, C. Wu, F.R. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)

R.S. Berry, P. Salamon, B. Andresen, Entropy 22, 908 (2020)

S.S. Qiu, Z.M. Ding, L.G. Chen, Y.L. Ge, Sci. China Technol. Sci. 64, 1007 (2021)

S.S. Qiu, Z.M. Ding, L.G. Chen, Y.L. Ge, Sci. China Technol. Sci. 64, 1641 (2021)

Z.M. Ding, S.S. Qiu, L.G. Chen, W.H. Wang, J. Non-Equilib. Thermodyn. 46, 273 (2021)

Y. Bassie, T. Birhanu, Y. Abebe, A. Abawari, arXiv:2207.00867v1, 2022

L.G. Chen, S.J. Xia, J. Non-Equilib. Thermodyn. 47, 329 (2022)

J. Li, L.G. Chen, J. Non-Equilib. Thermodyn. 47, 433 (2022)

L.G. Chen, S.J. Xia, Sci. China Technol. Sci. 66, 841 (2023)

L.G. Chen, S.J. Xia, Sci. China Technol. Sci. 66, 2651 (2023)

L.G. Chen, Xia, S.J. J. Non-Equilib. Thermodyn.48, 41 (2023)

L.G. Chen, S.J. Xia, J. Non-Equilib. Thermodyn.48, 107 (2023)

L.G. Chen, S.S. Shi, H.J. Feng, Y.L. Ge, J. Non-Equilib. Thermodyn. 48, 179 (2023)

D. Wu, Y.L. Ge, L.G. Chen, L. Tian, J. Non-Equilib. Thermodyn. 48, 477 (2023)

L.G. Chen, X.W. Liu, F. Wu, S.J. Xia, H.J. Feng, Phys. A 537, 122597 (2020)

S. Singh, S. Rebari, Eur. Phys. J. B 93, 150 (2020)

X.L. Huang, L.C. Wang, X.X. Yi, Phys. Rev. E 87, 012144 (2013)

X.W. Liu, L.G. Chen, S.H. Wei, F.K. Meng, J. Thermal Sci. Eng. Appl. 12, 011007 (2020)

R. Kosloff, Rezek, Y. Entropy 19, 136 (2017)

S. Chand, S. Dasgupta, A. Biswas, Phys. Rev. E 103, 032144 (2021)

R. Kosloff, J. Chem. Phys. 80, 1625 (1984)

M.O. Scully, K.R. Chapin, K.E. Dorfman, A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011)

R.S. Whitney, Phys. Rev. Lett. 112, 130601 (2014)

A.Q. Shu, F. Wu, Acta Phys. Sin. 65, 044304 (2016)

Z.J. Yan, P. Chin. J. Nat. 7, 475 (1984)

T. Yilmaz, J. Energy Instit. 79, 38 (2006)

H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

V. Singh, Phys. Rev. Res. 2, 043187 (2020)

K. Kaur, A. Jain, L.S. Singh, R. Singla, S. Rebari, arXiv:2301.03927v1, 2023

M.F. da Silva Ferreira, Eur. J. Phys. 33, 13 (2012)

X. Liu, L.G. Chen, X.Y. Qin, Y.L. Ge, F.R. Sun, Energy Conserv. 32, 19 (2013)

C. Wang, L.G. Chen, Y.L. Ge, F.R. Sun, Int. J. Energy Environ. 6, 73 (2015)

C. Wang, L.G. Chen, Y.L. Ge, F.R. Sun, Appl. Thermal Eng. 109, 507 (2016)

M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Renew Energy 60, 313 (2013)

Q.R. Gong, Y.L. Ge, L.G. Chen, S.S. Shi, J.H. Feng, Entropy 23, 1203 (2021)

X.H. Liu, Q.R. Gong, L.G. Chen, Y.L. Ge, Energy Rep. 8, 12712 (2022)

X.F. Qiu, L.G. Chen, Y.L. Ge, Q.R. Gong, J.H. Feng, Case Stud. Therm. Eng. 39, 102415 (2022)

X.F. Qiu, L.G. Chen, Y.L. Ge, S.S. Shi, Entropy 24, 1531 (2022)

Y.L. Ge, S.S. Shi, L.G. Chen, D.F. Zhang, H.J. Feng, J. Non-Equilib. Thermodyn. 47, 289 (2022)

H.R. Xu, L.G. Chen, Y.L. Ge, H.J. Feng, Energy 256, 124699 (2022)

P.C. Zang, Y.L. Ge, L.G. Chen, Q.R. Gong, Case Stud. Therm. Eng. 35, 102154 (2022)

W.H. Yang, H.J. Feng, L.G. Chen, Y.L. Ge, Energy 278, 127755 (2023)

L.G. Chen, S.S. Shi, Y.L. Ge, H.J. Feng, Energy 282, 128717 (2023)

L.G. Chen, S.S. Shi, Y.L. Ge, H.J. Feng, Energy 282, 128817 (2023)

L.G. Chen, P.L. Li, S.J. Xia, R. Kong, Y.L. Ge, Sci. China Technol. Sci. 65, 1396 (2022)

P.L. Li, L.G. Chen, S.J. Xia, R. Kong, Y.L. Ge, Sci. China Technol. Sci. 65, 657 (2022)

P.A. Erdman, A. Rolandi, P. Abiuso, M. Perarnau-Llobet, F. Noe, Phys. Rev. Research 5, L022017 (2023)

E. Açıkkalp, N. Caner, Eur. Phys. J. Plus 130, 73 (2015)

Y.D. Saputra, Positron 9, 81 (2019)

Y.D. Saputra, J. Phys. Conf. Ser. 1726, 012016 (2021)

X.W. Liu, L.G. Chen, F. Wu, F.R. Sun, Math. Comput. Modelling 54, 190 (2011)

F. Wu, L.G. Chen, F.R. Sun, C. Wu, Q. Li, Phys. Rev. E 73, 016103 (2006)

F. Jain, S. Cheung, W. Huang, Int. J. Infrared Millim. Waves 21, 759 (2000)

J.H. Wang, Study on the Performance of Finite Time Thermodynamic Cycles, Nanchang University, Nanchang (China) 2007

J.W. Zhang, J.Q. Zhang, G.Y. Ding, J.C. Li, J.T. Bu, B. Wang, L.L. Yan, S.L. Su, L. Chen, F. Nori, Ş.K. Özdemir, F. Zhou, H. Jing, M. Feng, Nat. Commun. 13, 6225 (2022)

X.F. Nie, X.R Zhu, C. Xi, X.Y. Long, Z.D. Lin, Y. Tian, C.D. Qiu, X.D. Yang, Y. Dong, J. Li, T. Xin, D.W. Lu, Phys. Rev. Lett. 129, 100603 (2022)

C.J. Ou, S. Abe, Europhys. Lett. 113, 40009 (2016)

R. Kumar, S.C. Kaushik, R. Kumar, Int. J. Eng. Res. Technol. 6, 643 (2013)

S.N. Liu, C.J. Ou, Entropy 18, 205 (2016)

L. Tian, L.G. Chen, Y.L. Ge, S.S. Shi, Entropy 24, 1443 (2022)

J.H. He, L.G. Chen, Y.L. Ge, S.S. Shi, F. Li, Entropy 24, 1445 (2022)