Comparative X-ray Diffraction Study of Two Liquid Crystalline Compounds with Chiral Centers Based on (S)-(+)-2-Octanol and (S)-(+)-3-Octanol

Main Article Content

A. Deptuch
A. Lelito
B. Sęk
M. Urbańska

Abstract

The structure of the antiferroelectric smectic C*A phase is investigated for two liquid crystals with almost identical molecular structures, except for chiral centers. The X-ray diffraction results determined the crystal unit cell parameters, smectic layer spacing, average distance within layers, and correlation length of the short-range positional order. The coefficients of thermal expansion are determined for the crystal phases. The molecular modeling with the semi-empirical PM7 method and density functional theory calculations with the def2TZVPP basis set and B3LYP-D3(BJ) functional are applied to determine the tilt angle of molecules from the experimental smectic layer spacing. The most probable conformations are then selected based on a comparison with the tilt angle measured by the electro–optic method, known from the previous results. In the most suitable molecular models, the chiral chain makes an approximately 90° angle with the molecular core, and some fragments in the fluorinated part of the achiral terminal chain are in the gauche conformation. 

Article Details

How to Cite
[1]
A. Deptuch, A. Lelito, B. Sęk, and M. Urbańska, “Comparative X-ray Diffraction Study of Two Liquid Crystalline Compounds with Chiral Centers Based on (S)-(+)-2-Octanol and (S)-(+)-3-Octanol”, Acta Phys. Pol. A, vol. 146, no. 1, p. 79, Jul. 2024, doi: 10.12693/APhysPolA.146.79.
Section
Articles

References

G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, Springer-Verlag, Berlin 1988

J. Als-Nielsen, J.D. Litster, R.J. Birgeneau, M. Kaplan, C.R. Safinya, A. Lindegaard-Andersen, S. Mathiesen, Phys. Rev. B 22, 312 (1980)

J.P.F. Lagerwall, F. Giesselmann, ChemPhysChem 7, 20 (2006)

K. D'havé, P. Rudquist, S.T. Lagerwall, H. Pauwels, W. Drzewiński, R. Dąbrowski, Appl. Phys. Lett. 76, 3528 (2000)

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, M. Tykarska, Displays 25, 9 (2004)

J.T. Mills, H.F. Gleeson, J.W. Goodby, M. Hird, A. Seed, P. Styring, J. Mater. Chem. 8, 2385 (1998)

W. Piecek, Z. Raszewski, P. Perkowski, J. Przedmojski, J. Kędzierski, W. Drzewiński, R. Dąbrowski, J. Zieliński, Ferroelectrics 310, 125 (2004)

A. Deptuch, T. Jaworska-Gołąb, M. Dziurka, J. Hooper, M. Srebro-Hooper, M. Urbańska, M. Tykarska, M. Marzec, Phys. Rev. E 107, 034703 (2023)

W. Tomczyk, M. Marzec, E. Juszyńska, R. Dąbrowski, D. Ziobro, S. Wróbel, M. Massalska-Arodź, Acta Phys. Pol. A 124, 949 (2013)

A. Drzewicz, E. Juszyńska-Gałązka, W. Zając, M. Piwowarczyk, W. Drzewiński, J. Mol. Liq. 319, 114153 (2020)

K. Drużbicki, E. Mikuli, A. Kocot, M.D. Ossowska-Chruściel, J. Chruściel, S. Zalewski, J. Phys. Chem. A 116, 7809 (2012)

P. Perkowski, Z. Raszewski, J. Kędzierski, J. Rutkowska, W. Piecek, J. Zieliński, S. Kłosowicz, Ferroelectrics 276, 279 (2002)

M. Urbańska, P. Morawiak, M. Senderek, J. Mol. Liq. 328, 115378 (2021)

A. Deptuch, M. Jasiurkowska-Delaporte, W. Zając, E. Juszyńska-Gałązka, A. Drzewicz, M. Urbańska, Phys. Chem. Chem. Phys. 23, 19795 (2021)

A. Deptuch, A. Lelito, E. Juszyńska-Gałązka, M. Jasiurkowska-Delaporte, M. Urbańska, Phys. Chem. Chem. Phys. 25, 12379 (2023)

M. Żurowska, R. Dąbrowski, J. Dziaduszek, K. Czupryński, K. Skrzypek, M. Filipowicz, Mol. Cryst. Liq. Cryst. 495, 145/[497] (2008)

M. Żurowska, R. Dąbrowski, J. Dziaduszek et al., J. Mater. Chem. 21, 2144 (2011)

M. Żurowska, M. Filipowicz, M. Czerwiński, M. Szala, Liq. Cryst. 46, 299 (2019)

J. Rodríguez-Carvajal, Phys. B Condens. Matter 192, 55 (1993)

M.J. Cliffe, A.L. Goodwin, J. Appl. Cryst. 45, 1321 (2012)

M. Lertkiattrakul, M.L. Ewans, M.J. Cliffe, J. Open Source Softw. 8, 5556 (2023)

M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 16, Revision C.01, Gaussian Inc., Wallingford (CT) 2019

J.J.P. Stewart, J. Mol. Model. 19, 1 (2013)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, J. Cheminform. 4, 17 (2012)

A. Le Bail, H. Duroy, J.L. Fourquet, Mater. Res. Bull. 23, 447 (1988)

J. Budai, R. Pindak, S.C. Davey, J.W. Goodby, J. Phys. Lett. 45, 1053 (1984)

J. Yu, Z. Chen, R. Teerakapibal, C. Benmore, R. Richert, L. Yu, J. Chem. Phys. 156, 084504 (2022)

W. Tomczyk, M. Marzec, E. Juszyńska-Gałązka, D. Węgłowska, J. Mol. Struct. 1130, 503 (2017)

A. Różycka, A. Deptuch, T. Jaworska-Gołąb, D. Węgłowska, M. Marzec, Phase Trans. 91, 159 (2018)

K. El Guermai, M. Ayadi, K. El Boussiri, Acta Phys. Pol. A 94, 779 (1998)

B.M. Ocko, A.R. Kortan, R.J. Birgeneau, J.W. Goodby, J. Phys. 45, 113 (1984)

W. Massa, Crystal Structure Determination, Springer-Verlag, Berlin 2000

Y. Takanishi, A. Ikeda, H. Takezoe, A. Fukuda, Phys. Rev. E 51, 400 (1995)

B.B. He, in: C.J. Gilmore, J.A. Kaduk, H. Schenk, International Tables for Crystallography, Vol. B, 2019, p. 130

R.S. Rowland, R. Taylor, J. Phys. Chem. 100, 7384 (1996)