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DETERMINING THE MINIMUM ENERGY REACTION PATH™®**
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The reference coordinate approach is presented for locating transition states and
the minimum energy reaction paths (MERP’s) on' potential energy surfaces (PES’s). It
treats the PES, E(x, y, L), as E.[x, y, L(x, »)]; x and y are the mapping coordinates, and L
stands for the remaining coordinates. A reference curve (RC) is used to generate a good
approximations to the MERP, as the locus of minima in sections perpendicular to the RC.
Two kinds of RC are used: the bond-energy-bond-order (BEBO) path and an energy con-
tour (EC) that passes from reactants to products. General algorithms are proposed for
following EC’s and for recognizing that an EC has entered a product region. Results obtained
with the BEBO paths as RC for the H,+H and H,+F systems are reported. The efficiency
of the method is illustrated by application to model “blind” valley surfaces, using an EC
as RC.

1. Introduction

The transition-state (activated-complex) theory [1] of chemical kinetics has provided
for a wide variety of chemical reactions the most useful phenomenological framework
for both parametrizing and calculating rate constants from the properties of the elemeniary
species participating in the reaction and those of the activated complex. According to
this theory a starting step in an a priori determinaticn of a rate constant is a calculation
of the potential barrier, and this is still valid even when the assumption of the existence
of a long-lived activated complex is not justified [2]. The potential barrier is calculated
along the reaction profile, a section through the minimum-energy reaction path (MERP),
corresponding to the saddle points (S) and the bottoms of the reactants and products valleys
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Fig. 1. Examples of the potential energy surfaces showing inadequancy of the “foliowing the bottom’
and “reaction coordinate’” algorithms: (a) Schematic energy contour diagram of the two “blind” valleys
surface for the rearrangement of cyclobutene into butadiene by disrotatory ring opening (Refs [18, 31D.
Both the “following the bottom” and “reaction coordinate” techniques (the latter using R as independent
variable) are inadequate to find the pass between the reactant and product valleys. (b) Contour diagram
of the potential energy surface used to model isomerizations of the trimethylene diradical (Ref. [36D).
The “following the bottom™ algorithm will give only the optical isomerization path (solid line), being
inadequate to find higher pass along the geometrical isomerization path (circles). The discontinuous path
(broken line) has been obtained by applying the mapping coordinate 0, as “reaction coordinate™. The ener-
gies (in kcal/mol) are relative to the zero energy configuration (8, = 0, 6, = 0), and the gap between two
successive contours is 0.5 kcal/mol. (c) Perspective view of the potential-energy surface for Hs, based on the
data reported in Ref. [37]. The “following the bottom” procedure will reach the higher saddle point Sh
along the path (1) (— - —), missing the lower pass through the saddle point Sy lying on the path (2) (circles)

(see Fig. 1). The concept of a reaction path as used here is a static property of the given
potential energy surface, and is distinct from that of a classical trajectory.

The main sources of potential energy surfaces are calculations based on the methods
using empirical energy functions [31, Extended Hiickel Theory (EHT [4]), various versions
of the ZDO SCF MO schemes (CNDO [5), INDO [6], MINDO [7], and NDDO [8]),
the Perturbative‘-Conﬁguration—lnteraction-of-Localized-Orbitals method (PCILO [9]),
and ab initio schemes [10]. Most of the systematic dynamical studies, however, utilize not
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ab initio surfaces but rather model surfaces generated by various versions o the London-
Eyring-Polanyi (LEP) method [11], the Diatomic-in-Molecules (DIM) method [i2],
and many arbitrary function models, e.g. [13]. :

In recent years much effort has been devoted to the development of reliable methods
for exploring potential energy surfaces, i.¢. locating both the stationary and saddle points,
and determining the MERP [14-24]. The search techniques applied may be classified
according to whether or not they make the assumption of choosing one degree of freedom
as the independent variable of the potential energy (called “reaction coordinate [18]),
and optimizing the remaining degrees of freedom for each value of the independent variable.
The “reaction coordinate” algorithms have proved to be inadequate in many cases(e.g.
[18, 22, 25]), often giving discontinuous paths (Fig. 1), and sometimes failing to include
the transition state. The second, general approach involves consideration of all the degrees
of freedom, and can in turn be decomposed into whether or not the algorithms seek to
locate only chemically interesting points on the complete hypersurface [17, 20, 24], rather
than to follow the MERP along the bottom of the reactant and product valleys [14, 19, 23].
The former methods, perhaps the most promising, involve the use of symmetry [15] and
generation of the “linear” and “quadratic internal paths to locate initially the transition
state region, with subsequent minimization of the norm of the gradient. The latter, although
providing quite satisfactory following of bottom of the valley, will obviously fail in the
case of a pass between the reactant and product valleys that is located on the side of ridge
as shown in Fig. 1a. It will also be inadequate to find a second pass from a given valley,
higher (Fig. 1b) or lower (Fig. 1c), being designed only to follow closely the bottom of the
valley.

The purpose of this article is to describe a simple method for quickly locating the
transition state region and MERP. The method uses the reference coordinate, defined
here quite generally as any smooth curve leading from reactants to products through
transition state region, and displaying the main features of the surface in question. This
definition is similar to those used by Marcus [26a] and Light [26b]. The method proposed
is to some extent conceptually similar to those involving generation of arbitrary paths
[17, 20, 24]. Also, it allows one to avoid the abovementioned disadvantages of the “bottom-
following” procedure. The illustrative applications of the method to the collinear ex-
change reaction surfaces (the H+H, and H,+F systems) and model “blind” valley
surfaces are reported. As the reference coordinates the BEBO trajectory [27] and a contour
of the surface in the “mapping” plane were used respectively.

2. The -reference coordinate approach

The potential energy functions are in general multidimensional. The most common
manner of their graphical representation (for a description of the surface topographically)
is by contour maps. Such a map is constructed by representing two variables (mapping
coordinates) as distances along the x and y axes. The potential energy function is then
considered as an explicit function of only x and y, with all the other variables (relaxational
coordinates) either held fixed or optimized for each point on the mapping plane (see
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Appendix A). The former case is really a two-dimensional cut through a multidimensional
surface. The latter, on the other hand, represents the reduced picture of the complete
surface on the (%, y) plane, including the effect of changes in molecular skeleton via
relaxational degi’ees of freedom, which is valid in most cases.

The choice of x and’ y is not generally. unambiguous. Nevertheless, one can make
good choices in most cases, by taking into account the expected changes in geometry.
As a general rule one uses coordinates that are common to both reactants and products,
and that undergo considerable change in the course of reaction. For instance, in disrotatory
ring opening of cyclobutenc. (Fig. la) the axes x = ¢ and y = R can be chosen.

The “raction coordinate’” method (using one of the mapping coordinates as the in-
dependent variable) often féils to produce smooth, continuous paths [25]. This is because
the one-Gimensional cuts through a surface which it uses to determine the “MERP”
are not perpendicular in general to the exact MERP. Herein lies the basic difficulty, since
such perpendiculars cannot be determined a priori in the general case. We introduce the
reference curve (RC) in the mapping plane as a means to generate good approximations to
these exact perpendiculars. This will be possible if the RC is smooth and -well behaved, i.e.,
leading from reactants to products through the transition state region, and displaying the
main features of the surface. The locus of the energy minima along the perpendicﬁlars
to the RC dcfire the reference coordinate path (RCP). The RCP is expected to lie rather
close to the MERP when the RC is well behaved. This approach, to be called the reference
coordinate approach, can also be applied iteratively by using the RCP obtained in a previous
iteration as the RC for determining the next RCP, until self-consistency is reached.

For instance, in the case of collinear exchange reactions the BEBO trajectory [27]
or Light’s curve [26b] can be applied as the starting RC. The illustrative applications
of the BEBO RC will be the subject cf the next section.

The BEBO RC is obviously not of general applicability. Alternatively, we here wish
to suggest the use of the energy contours (EC) on a mappirg plane for quickly exploring
a general surface, i.e. for finding the pass from reactants to products and for determining
the corresponding RCP. In order to follow efficiently a contour of the potential energy
surface we have developed a contour-following algorithm (described in Appendix A)
with rather substantial reduction in computational effort within ZDO SCF MO type
calculations. '

A contour can be used as the RC for generating an RCP only if the contour crosses
a transition-state region. Therefore, in addition to generating a contour, one must decide
whether it enters a region associated with reaction products. Techniques for making this
decision are described briefly in Appendix B. Startirg in the reactant region with a contour
whose energy is expected to be lower than that of the saddle point one determines contours
of successively higher energy until one is found to enter the product region. This approach
is also applicable to cases in which there are several sets of products. For each set of
products one then generates an RCP as though that set were the ouly one.

The treatment described here provides the MERP and the corresponding saddle-
-points Sé on the reduced potential energy surface E[Q, L(Q)], which depends explicitly
only on the mapping coordinates @; L denotes the remaining, relaxationdl degrees of
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freedom of molecular system. To locate the exact saddle-point § on the multidi-mensional
surface E(Q, L) further calculations are necessary to refine the point Sp. As shown by
Mclver and Komornicki [17, 24], such refinement can be efficiently accomplished by the
minimization of the gradient norm, |g(Q, L)|, using the least-squares method of Powell
[38]. The extra computational work should be small, because one can expect S, to be
closeto S.

3. Application of the BEBO reference curve to the collinear exchange reactions

Johnston and Parr [27a] have used the idea of the conservation of the overall bond
order n during the “bond-breaking-bond-forming” process leading to exchange reaction.
They assume that

ny+n, =1, 43)]

where n; and n, are the bond orders of the two bonds in question. Equation (1) when
combined with the Pauling relation [28],

Ri = R§S)_ a; 1Og (ni): n; e [071]9 (2)

defines the bond-energy-bond-order (BEBO) trajectory. R® is the length of the “standard”
bond i (with #; = 1) and &; is an empirical constant. The BEBO trajectory has been
reported to represent quite satisfactorily the MERP of exchange reactions (e.g., [27D, c].
This suggests that it can be used profitably as the reference curve, BEBO RC, for determining
a more refined path, BEBO RCP.

We have chosen two collinear exchange reactions as illustrative examples:

() H+H, —» H,+H, with the SCF CI surface of Shavitt and coworkers [29],

tif) F+H, — FH-+H, with the LEPS surface of Muckermann [301.

These reactions, having a symmetrical and asymmetrical two-valley surfaces, respectively,
were reported previously as typical examples of the inadequacy of a single “reaction
coordinate” procedure for determining the course of the reaction [25]. The results, obtained
using the BEBO parameters from Ref. [27c], are summarized in Figs 2, 3.

Figure 2 shows that the “reaction coordinate” technique generates a “kink” in the
reaction path near the saddle-point when R, , is used as reaction coordinate to the right of
the saddle point and R,; is used to the left [25a]. The BEBO RCP, on the other hand,
represents a “kinkless” path, slightly refined in comparison with the BEBO path, and,
as follows from inspection of the contour map, practically identical with the MERP.
Similar conclusions follow from Fig. 3. One can observe, however, that deviations of the
discontinuous “reaction coordinate” paths from the MERP (Fig. 3a) are much larger
in the case of H,+F than those for H,. As a result the corresponding profiles (Fig. 3b)
lead through the region of much higher energy near both ends, where the largest deviations
can be observed. Again one can see that the BEBO RC generates the BEBO RCP, which
is practically the exact MERP.
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Fig. 2. Application of the BEBO trajectory for determination of the MERP on the surface for collinear

exchange reaction of the H+H; system. The potential surface were taken from Ref. [29]. The discontinuous

paths obtained by searching for the minimum in the directions perpendicular to both mapping coordinates
are also shown. The parameters of the BEBO curve were taken from Ref. [27c]
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4. Use of the energy contours in exploring the model “blind” valley surfaces

Dewar et al. [18, 31] have observed that a single geométric coordinate is-inadequate
for following the course of pericyclic reactions that involve antiaromatic transition states.
Potential W5 (Eq. (3)) models the singnificant features of the surfaces for these reactions,
namely two “blind” valleys that are connected by a pass through the ridge that separates
them (Fig. la). :

Wi = Weage— Woass T Wenas 3
Wi = [Euagel(i —~24)7] {14247 + ALA exp (= 2x]x,)~2 exp (= x/x,)
+ A4 exp (2x/x,)—2 exp Ge/x )13 (3a) '
4 = exp (—x)[[1+exp (=2x)], @Y
Wos = 3 (Buigge— Epu) [L+c08 (/)] oxp (=328, (G0
W.., = 4 C[1—cos (ax/x,)] {1+tanh [([—x/lx/Ty—D)/FI}- (3d)

,'"I ,f'.l / ,": /
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Fig. 4. Use of the equipotential contours as the reference coordinates in searching for the transition state

region and the MERP on the model “blind” valley surface 1, having a basin at the pass between the reactant

and product valleys. The origin of the coordinate system is the center of symmetry for the equipotential

contours. The saddle point S eccurs early before the middle of the pass. The values of the surface param-,

eters (see text). are: Eridge = 1.0, xy = 1.0, Epass = 045, B = 03, F=05,C= 20, and D= 0.25.
The contours, 4, B, and C refer to y = 0.5 (see Appendix A). o
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The origin of the coordinate system is at the centre of the pass, which is the center of
symmetry for the equipotential contours. The ridge lies on the y-axis, and the two valleys
are parallel to it. W, (Eqs (1a) and (1b)) is a cross-section perpendicular to the ridge
at a value of y that is well removed from the pass or either valley end. Wiigge is the

N, \ . I\-
09 08 07 06

0Q | | .|
-10 -05

Y

Fig. 5. Use of the equipotential contours as the reference coordinates in searching for the transition state

region and the MERP on the model “blind” valley surface II, having a saddle point S at the middle of the

pass. The origin of the coordinate system is the center of symmetry for the equipotential contours. The

values of the surface parameters (see text) are: Etigge = 1.0, x, = 1.0, Epass = 045, B= 0.3, F = 0.5,
C =20, and D = 1.0. The contours A4, B, and C refer to y = 0.5 (see Appendix A)

symmetric version of the back-to-back Morse functions used by Lowdin [32], W, is
re-expressed, however, to make the valley floors the zero of the energy, Eq,. the height
of the ridge, and x, the distance from the ridge to the minimum of either valley. W,
introduces the pass through the ridge without affecting the valley floors. W,,, closes
the valley ends without affecting E s> the energy at the midpoint of the pass. If the valley
ends are sufficiently far from the pass, E,.s is the activation energy for the reaction
(Fig. 5). If the valley ends interact strongly with the pass, a basin can be formed at the
pass (Fig. 4). In this event there is s transition state on each side of the ridge, and the
activation energy is greater than E

10
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We have used the potential W (Eq. (3)) to test the validity of the reference coordinate
approach based on the use of energy contours as reference curves. Two “blind” valley
surfaces have been generated: I (Fig. 4), including a basin in the middle of the pass between
“reactant” and “product” valleys, and 1I (Fig. 5), with the saddle at the middle of the
pass and the ends of the valleys more “pathologically” distant from the pass. Note that
similarly to the situation shown in Fig. 1a, both the “bottom-following” technique and
the use of y as a “reaction coordinate” miss completely the pass to the next valley.

The contour-following procedure has been applied to investigations of there represen-
tative contours (4, B, and C) on both surfaces. Among these contours 4 and C have
higher energy than the sadle-point, whereas B has a lower energy. The RCP’s shown in
both figures have been obtained using contour C as the RC. The assumed tolerance of
the energy deviation in the contour-following algorithm fsee Appendix A) was ¢ = 0.05.

Both figures show that the contour-following procedure constitutes a quite efficient
way for determining the pass to the next valley. Figure 4 shows that the RCP is a continuous
path leading from the “reactant” valley through a saddle-point S and the bottom of the
basin to the “product” region. Visual inspection of the contour map shows, however,
that the RCP is slightly different from the expected MERP. This is because the RC used
(contour C) is not a good enough approximation to the MERP. Note, however, that using
the RCP shown in Fig. 4 as the RC should give a much better RCP in the next iteration.
Figure 5 shows that the “blind” valley feature of surface II is so “pathological” that
use of contour C as a reference curve does not generate a continuous path. In such a case
perhaps the only way to obtain the MERP is first to locate the saddle-point and then,
starting from this point, to move in small steps in accordance with the steepest-descent
direction towards the “reactant” and then towards the “product” valleys. One can observe,
finally, that the minimum gradients on the “ponreactive’ contours B have been located
quite satisfactorily in spite of large step sizes applied (maximum step size = 0.5), showing
in both cases the direction of the pass to the next valley. On the basis of these test results
one can expect that the finite step size applied in the contour-following procedure (control-
led in our algorithm by the current curvature of the contour) should not introduce a signifi-
cant error when the second test of Appendix B is used for recognizing that an energy
contour has entered a product region.

The authors are deeply grateful for the hospitality accorded them in Professor Robert
G. Parr’s group at the University of North Carolina at Chapel Hill. The authors are
also much indebted to Dr. Robert A. Donnelly for providing a copy of the program
SCANB for plotting the contour diagrams, and for his assistance in using this program.

APPENDIX A
The algorithm for-following of constant-energy contours
It is desirable to base the algorithm for the contour following on a local quadratic

approximation to the surface E[Q, L(Q)], where @ = (x,y) denotes the two mapping
coordinates and L = (Ls, ..., Ly) is the set of the remaining internal degrees of freedom
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of a molecular system. The parameters L are assumed to be either fixed or partly optimized
for-a given point Q. Within the SCF MO methods the total energy depends on nuclear
coordinates also through the matrix of the SCF LCAO MO coefficients, C[Q, L(Q)]. 1t
was shown recently [33], however, that in the case of the ZDO type od SCF MO calculations
practically complete optimization of structural parameters can be performed ‘using the
fixed-matrix C(R,), where R, represents the starting point for optimization of geometry.
Thus, within the widely used ZDO approximation (CNDO, INDO(MINDO), and NDDO
methods) such partial refining of the parameters L(Q) for a given point @, can be rather
efficiently carried out with. negligible additional computational expense by -using - the
fixed matrix C(Q,, L;)). The first-order contribution to. the energy expansion. near point
[Qi L(Qy)] is. expected to be negligible; L(Qy) - collects. the.. relaxational - structural
parameters. determined -from the condition of the- vanishing forces

l(Qk,L)~F(">[Qk,L COLI=0, i=3 .7 (AD

The second order contrlbutlons can be estlmated [33a] using the force constants deternnned
from the force field F® [Eq. (AD)], e.g. via the finite d]fference method [l7a 34]. Also,
to a good approxnnatlon parameters L can be held ﬁxed at L(Qk) durrng the searchlng
for the next point in the contour-followmg procedure In what follows we will cons1der
explicitly only mapping plane Q (x, y) and the energy surface E[Q, C(Qo)]

The quadratlc approx1matlon should ensure fast ultlmate , convergence for most
surfaces ‘when steps become small. Let us now assume that the following second-order

=y

Fig. Al. Schematic picture illustrating the procedure used to follow the contour E, on the surface E(Q)
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Taylor expansion remains valid in the neighborhood “of the point Qp = (¥, yi) (see
Fig. Al): I

E(Q) = EQ)+£(0)4"+ a4, | 2
where for the current point QO ’
q=0-0 - (A2a)
\ - _[ EY (OE
= (EC_)Qk (%7>Qki| ’ (A2b)
, O°E 1

N, =

@y =) (429

Energy gradients are provided directly by the ZDO-type methods [17a], and the Hessian
matrix H ® can be reasonably estimated from the force field F ® [0, C(QY] [33a], e.g.
by finite differences [17a,34], ;

[ 0g 1 . ‘ad
gO —(22Y) ~ = N _ (gD
= \oa)o.~ B [(g+)- g(q )1 (A3)
where 6 is a small scalar and ¢ denotes the point with g;= 0 and g;»; = 0. In ab
initio calculations both gradients and Hessian matrix require the finite difference approach
[35], and the procedure described here becomes rather expensive.

In order to follow the contour E, without excessive deviation from the starting enlergy
we should look for vector ad; such that

AE, = E(Qk+°‘Ak)‘E(Qk)_= —[E(Q)—E] = -Dy, (A4)
where « is set equal to unity at each step unless the calculated absolute value of:the energy
deviation D, , is greater than an assumed tolerance ¢, in which case o is halved and the
step repeated. Approximating AE, by the energy change estimated using Eq. (A2), we
have !

‘ AE, = '“,g(Qk)AI{"!'“ZAkH(k)AIZ' = —Dy. (AS)
To obtain efficient yet close following of a contour the step size 4, should respond

to changes in the contour curvature, Cg. ‘Thus we use
A = y[ers (A6)

where- y is-a parameter that controls step size. Depending on the value of the ratio
5, = 21(0Q0/g.(Qy), the curvature ¢ is estimated from the relations:

_(Sk‘v'sk—1)/A'1,k—1= if s<1,

= (1 1)/ ) (A7)
A o | dyp-1, i s>1 A,_

St Sg—1

Finally, fora givenTstep size 4, the equaﬁon (AS) is solved for the v‘step direction 9 (Fig. Al).
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Fig. A2. Effect of the step size parameter, v, on the contour-following on the “blind” valley surfaces I(a)
and II(b). For the values of the surface parameters see Figs 4 and 5 respectively. The broken line (primed
numbers) and solid line (nonprimed numbers) refer to the calculations with y = 0.75 and p = 0.3 respectively.
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A set of calculations for model “blind”’ valley surfaces, as described in a preceding
section, have been carried out to test efficiency of the contour-following procedure. The
maximum step size A, = y and the tolerance of the energy deviation ¢ = 0.05 were as-
sumed. Two values of y, 0.3 and 0.75, have been used. The results are compared in Fig. A2.

The test calculations show that the following of the contour is very satisfactory, even
for quite large step sizes (y = 0.75). Notice that for such high values of the parameter y
only a very few steps are required for the complete testing of all the contours considered
(the number of steps is the number of the function recalculation in the ZDO SCF MO
approximation). It follows that the local quadratic approximation to the surface remains
valid even for large steps. This tendency demonstrates the efficiency of the proposed
algorithm. Reference to Fig. A2 also shows that the step size control we have adapted
allows one to reproduce rather satisfactorily the shape of a contour. However Fig. A2a
shows that for large step sizes and closely placed contours of the same potential energy,
it is eventually possible to escape from one branch of the given contour into another.
This fortunately does not affect the efficiency of the contour-following procedure in
searching quickly for the pass between the reactant and product valleys, and in providing
information about the shape of the minimum energy reaction path.

i APPENDIX B

Techniques for recognizing that an energy contour has entered a product region

The first test requires that one knows in advance the approximate equilibrium Jocation
of the reaction products in which one is interested. At each step along a contour one
tests whether a circle of given radius around this product location is intersected by the
linear extension of the negative end of the gradient vector. The test works because the
tail of the gradient vector must sweep over the product location at least once while the

' ]
\ Reactants R/egion

/)
Pr‘oduc’csl Region

Fig. Bl. Energy contours in the neighborhood of a saddle-points, S. Arrows are gradient vectors
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contour is in the product region. The circle should be large enough to keep the vector’s
tail from jumping completely across the circle, between two consecutive steps of the contour-
-following algorithm. If one accepts a possitive outcome of the test only when the point
on the contour is closer to the products than to the reactants (or to other sets of products,
if any), the possibility of misleading results is small, though not zero. Such pathological
cases will be detected when one attempts to construct an RCP using the contour as RC.
The test is economical, since one already has the gradient at each point.on the contour
(see Appendix A). A little simple algebra is the only extra computation that is required.

The secondt est does not require any prior knowledge about location of reaction prod-
ucts. This test is based on properties of potential energy surfaces near any saddle-point,
as illustrated by Fig. B1. In that figure curve AS is the MERP and curve BS is the crest
of the region that separates reactants from products. The energy of contour 1 is less than
that of the saddle-point whereas that of contour 2 is greater. Because point A lies on the
MERP, the magnitude of its gradient U is a local minimum for its contour, and the vector
points to the convex side of the contour. Because point B lies on a ridge, the magnitude
of its gradlent V is likewise a local minimum, but the vector points to the concave side.
Vectors U and V are tangent to the MERP and the crest, respectively. Therefore the
extension of the positive end of vector U intersects the extension of the negative end
of vector Vif their contours are sufficiently close in energy. The point of intersection, 7, is
then an approximation to the location of the sadle-point.

The details of the second test follow. Let Vbe a gradient vector that is a-local minimim
for the contour currently under study. Let U be the closest gradient vector that is a local
minimum for the adjacent contour that is lower in energy. The outcome of the test is
Judged positive only if the positive extension of U infersects the negative extension of v,
if U points to the convex side of its contour, and if Vpomts to the concave side of its
contour. In this case one may assume that the contour of ¥ crosses over into a product
region, but the contour of U does not. Misleading results of this test can arise because
of finite energy intervals or because of finite step lengihis alorg the contours. Finite step
length is the more serious. It can cause displacement of both vectors along their contours
by distances up to the current step lengths. Displacement arises because a gradient vector
is regarded as a local minimum merely if it is shorter than vectors at the steps immediately
before and after its own. Figure Bl illustrates the resultirg error when the vectors U’
and 7’ are displaced from the true local minima U and ¥, respectively.

In summary, the first test is more economical than the second, but it requires prior
knowledge about the location of reaction products. The second test is more - general
because it does not require this knowledge, bur it requires smaller step sizes and energy
intervals to attain reliability comparable with that of the first test.
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