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A classical theory of nonlinear relaxation phenomena, related with third-order electric
polarization, is proposed taking into account polarization rise ‘and decay processes due to
the switching on and removal of external electric fields in the approximation of Debye
rotational diffusion, of dipolar molecules.’ By .statistical - perturbation calculus and Racah
algebra methods, it is shown. that the time-variations in polarization depend.-on-the rotational

. -relaxation times 7,, 7, and that, during times comparable withz; and z_'z,'th,e dispersion and

" absorption of polarization is' described by generalized Debye relaxation factors. The results,-
applicable to nonlinear processes in general, are discussed in detail for "therdescr'iption'bf X
the dynamics of processes, related with third-order polarization in liquids, giving rise to
polarization at the fundamental and third harmonic frequencies and to variations in third-
-order, nonlinear, electric susceptibility.

1. Introduction

. Linear.relaxation processes in liquids are a subject of interest since 1929, when Debye’s
well known monograph. [1] appeared owing to which the dielectric methods for the. study
of dielectric relaxation became a source of abundant information concerning the rota-
tional motions of molecules and macromolecules, the electric properties .of these micro-
systems, as well as their nmmtual correlations in dielectric liquids -[1-4]. y

- Recently, Kasprowicz-Kielich, Kielich and. Lalanne [5, 6] .propesed-.a classical
theory of nonlinear relaxational processes in the approximation od Debye’s rotational
diffusion "describing ‘the dispersion and absorption of the third-order polarization of
liquid dielectrics induced by external time-variable electric fields of high and low frequency.
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Lately, results derived from their theory have been applied to the numerical investigation,
by Buchert, Kasprowicz-Kielich and Kielich [7], of the dispersion and absorption of
various nonlinear effects in the case of water and fibrinogen molecules.

The electric polarization P(E) of isotropic dielectrics is known to be a function of
successive odd powers of the external electric field strength:

E(f) = $ ¥, E(w,) exp (—iwa), M

where summation over ¢ extends over positive as well as negative values of the electric
field vibration frequencies w,, with w_, = — g Assuming the dielectric to be subject
to the action of three electric fields with the frequencies ®,;, w,, @3, its nonlinear third-
-order polarization P (w,;?) at the frequency w, = @y +w;+0; can be expressed by
the relation [5]:

PPN w43 1) = ng)t(_wﬂt,; 4, @3, @33 DE j(w1)Ek(w2)El(w3)a 2

where y(3(—w4; 0y, @3, ©3;t) is the tensor of the nonlinear third-order electric suscepti-
bility of the liquid. For an account of its rather complicated properties with respect to
the entire range of electric field frequencies, we refer to Ref. [6]. When working to obtain
numerical results for specific molecules, it was found convenient [7] to consider the simpler
experimental configuration in which the three fields are applied along the laboratory
z-axis of coordinates and the dipolar, linearly polarizable molecules possess axially-
-symmetrical electric proi)erties. In conformity with Debye’s assumption, the geometrical
properties of the molecules can be thought to be those of the spherical top. Eq. (2) now
yields the following, simple relationship:

PNy 1) = 2(—04; @y, @2, 033 NE(0,)E(@,)E(w3), 3

where x(—wy; 01, @2, @3, 1) is the scalar nonlinear electric susceptibility of order 3 of
the medium.

Here, we shall extend the theory of nonlinear relaxation phenomena proposed by
Kielich and co-workers [5-7] to dynamical rise and decay processes of the polarization
P®(w, ; t) due to the application and removal of external electric fields E,(w). In this way,
we obtain a description of the dynamics of such nonlinear processes [8] as: third-harmonic
generation in liquids defined by the susceptibility x(—3w; 0, ®, ©; t); second~harmonic
generation in liquids in the presence of a static electric field given by the susceptibility
¥(—20; w, »,0; £); self-induced variations in electric susceptibility — y(—w; @, @, —w; t);
nolinear rectification of dielectric frequencies — x(0; 2w, —@, —®; t); and quadratic

I Y . .
variations in electric permittivity E2(0; ~ y(—w; ®,0,0; ¢) induced by a strong static
electric field.

It will be shown that the attainment of a steady state of the polarization, P w45t 1),
is dependent on two Debye rotational relaxation times t, and 7, and that for time
intervals comparable with 7, and 7, the dispersion and absorption of nonlinear relaxa-

tional phenomena, related with the third-order electric polarization P®(w,; t) are
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described by the well known relaxation factors Ry (w,. and new relaxation factors
Rin(®ao). The present theory, when applied in experimental studies of the above named
effects by usual pulse technique and ultrashort laser pulse technique, will lead to informa-
tion concerning the relaxation times t; and 7, as well as the dynamics of rotational
molecular motions in liquids and solutions.

2. Rise in time of third-order electric polarization in liquids

Let us consider an isotropic dielectric. of volume V' containing N noninteracting
axially-symmetric molecules, having a permanent dipole moment m disposed along their
symmetry axis, the linear electric polarizability tensor elements ., = a,, # a,,, and the
nonlinear electric polarizability tensor elements b,,,, b,,, = b,... To gain insight into
the influence of molecular diffusional rotation on PS> (w,; ¢) at a moment of time # subse-
quent on application of the electric fields, we have recourse to a statistical averaging

procedure defined as follows [9]:

1
Py )ar = ; JMz(Qts E)fr(; t, E)dQ,. 4
Q¢

We calculate the orientational probability density function fz(€,; ¢, E) with the equation
of Debye rotational diffusion [1]. The function fz(Q,; ¢, E) defines the probability of the
molecule having the orientation €, at the moment of time ¢, with Q denoting the set of
Euler angles. Above, M,(2,, E) is the z-component of the total dipole moment of the
dielectric in the presence of strong external electric fields; on the assumption of zero
molecular interaction [10]:

M_[9,, E.(t)] = N{mP(cos 9,)+ [aPs(cos %,)+% yP,(cos $,)]E(t)
+[% bP(cos 9,)+ L xPs(cos 8,)JEZ() + % cPy(cos ,)EX(D)} + ..., ®)

where a = 4(a,,+2a,,) is the mean value of the linear electric polarizability of the
molecule, y = a,,—a,, its anisotropy, b = +(b,,,— 3b,,,) its mean second-order polariza-
bility, x = b,,,—3b,,, the anisotropy of its second-order (nonlinear) polarizability,
and ¢ = 3(C;zz0+ 24y,,) the mean value of its third-order nonligear electric polarizability
tensor; P;(cos 9,) are the Legendre polynomials.

On the molecular model assumed, the potential energy u[9,, E,(¢)] and dipole moment
component M,[3,, E,(t)] in the AC external electric field E,(¢) are functions of but one:
angle — the polar angle §,, corresponding to the Euler angle . The energy can be
expressed with sufficient accuracy in the form of the following expansion in the set of
Legendre polynomials:

u[8, E0] = — ¥ u[E()]P(cos 8) = —mE,({)Py(cos )

—[4 aPo(cos 9) +4 3P (cos 9)JEX(t) ~ [ 5 bPy(cos 8+ kPs(cos )IEX W)~ ...  (6)
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In the present case, the equation of Debye rotational diffusion reduces to:

1 ofa(8; 1, E) 1 0 [  Ofr(9:; 1, E):|
—— = —— —|sind —

Dy ot  sin9a8 a9
1 (8u(, E) ofe(9: . E) | fu®:t.E) 0 [ ou(8,, E)
— il 9 ,
- kT{ 38 a9 sins " s M

Dy, denoting the scalar coefficient of rotational diffusion of the molecule.

If the pbtential energy u[9,, E,(1)]'of the molecule is small compared with its thermal
energy kT, Eq. (7) is accessible to solution by statistical perturbation calculus; to thls aim,
we have recourse to the following expansion of the probability density function fR(S,, 1 E)
in a series in the set of Legendre polynomials:

S5t B) = % 3 (KT)ft, EYPy(cos 9,). ®

Inserting the preceding expansion into (7), equating the terms with the same powers of
kT, and applying the well known orthogonality properties of Legendre polynomials
[11, 12], we obtain the following simple linear differential equation for the successive

dynamical coefficients f”(z, E)

1o ")(t E) _

ol —k(k+1)f(t, E)—4% Z uJ E(D)]

k'ys

(n—-1) 1yt s k" k : ‘
X i, EY[K'(K + 1) —k(k+1)—s(s+1)] 00 ol )

z

where the [(Y)](; lg] are the Clebsch-Gordan coefficients, well known from angular

momentum theory, and summation over k' and s is defined by the “triangle inequality”
[11, 12]. "

In the zeroth approximation of perturbation calculus, we obtain from (9) the equa-
tion of free rotational diffusion of spherical top molecules [13, 14]

ot :
o =~k DD, (10)
with the well known solution
t .
£ty = const exp (— —> : | ’ 1
7 A

Above, the 7, are rotational relaxation times, related simply with the rotational diffusion
coefficient as follows:

7 = [k(k+1)Dg] ™ = 27, [k(k+1)]7 . N (V)
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The solution of Eq ©) for n =1 is of the form:

k'(k'+1)—k(k+1)—
(¢, E) = —DRexp< Tk>z ( +)7(2+) s(s+1)

sk’

, k 2 t . ’
X [(S) Ig o] ffk‘"“”(t’, E)u,[E(1)] eXp<+ Tt—k> dr'. (13

If integration in (13) is made to extend from O to oo, the distribution functlon corresponds
to the case when only the steady state of nonlinear third-order polarization is considered
i.e. the state attained by the dielectric after a sufficiently long time since the moment of
application or removal of the electric fields (for a complete discussion of this case, see
Refs [5-7]). On applying in (4) the probability density function fx(; E, ¢} given by Eqs (8)
and (13), on integrating from 0 to co, and on having recourse to the orthogonality properties
of Legendre polynomials, one arrives at the following result, analyzed in detail in Ref. [7]:

N
(=4 0, 0y, W33t > 7)) = {150+ — [36mbA(w+w,+ w33t > 1)

90V
1
+49’B(w; + 0, + @351 > )] + (kT)? 8m*yClw, +w, +ws; t> 7()
2 .
— (kT)?"m D(w+wy+ws;t > 1) pexp [ —i(w, +w,+w3)t]. (14)

This expression describes the dispersion and absorption of the third-order electric polar-
ization of the liquid on attainment of equilibrium (neglecting the dependence of the molecular
parameters m, y, b, ¢ on high-frequency electron dispersion). The nonlinear. relaxation
functions A(w,+w,+ws; > 1,), Blw;+w,+ws;t> 1), Clwi+w,+ws;¢> t;) and
D{w, +w,+w;3;t> 1,) of Eq. (14) have the form:

Alw+w,+o35t > 1)) = 5% abc=zl,2,3 [Ry(wupe)+3R(w,)], (15)
B(w;+w,+ws3t > 1) = ¢ ab=;2 \ Ry(wg), (16)
Clo;+w,+035t > 7)) = 15 ébc;;'z , {Ry(w0,)R ()
+3 [3Ry(@,) — Ry(@3) IR {(@arc) }» an
D(o;+a,+w53t > 1) =5 abc;l:z A R(0)R,(04)R 1(@asc) (13)

are dependent on the Debye relaxation factors [5, 6]:
Rk(wabc...) = (l—iwabc...‘ck)_ls (19)

de... = Wgt w4+,
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In Eqgs (15)—(18), summation has to extend over all distinct frequencies of -the elec-
tric fields, a # b # c.

A discussion of nonlinear relaxational processes based on Eqs (14)—(18) for a variety
of nonlinear effects, as well as numerical calculations of the dispersion and absorption
curves of these effects for the molecules of water and fibrinogen, are to be found in Ref. [7].

We now shall consider the dynamical process whereby a steady state of the polar-
ization P{P(w,; t > 1) is attained on switching on the AC electric fields E (w;) at the
moment of time ¢ = 0. We shall use the orientational statistical distribution function
Jr(®; E, t), given by Eqgs (8), (13). The result thus derived states that the polarization rise
is described, with accuracy up to EZ(t), by the following time-dependent contributions
to the third-order polarization tensor:

(1)¢

1
4] . 5
W—o4; 0, 0y, 033 1) = 1 (=ay; @, @,, 035 1)+ o X (S 0as 01, 02, 053 1)

1 2 1 3
+ <ﬁ> X(z)(_w4; Wy, Wy, W35 )+ <ﬁ> X(a)(“w4§ 0y, 0y, 033 )+ ... (20)

In the zeroth approximation of statistical perturbation calculus we have:

N
cexp [ —i(w; + o, +w3)t], 21

0 5
X( )(—604, @y, 03, W3, t) . % ;

showing that the third-order electric polarizability ¢ does not take part, within the E2(¢)-
-approximation, in the rise process of the polarization P{(wy; £); nor does it contribute, as
is seen from Eq. (14) also, to the dispersion or absorption of P{¥(w,; ¢) due to rotatlonal
reorientation of the molecules.

In the higher approximation of statistical perturbation calculus we obtain the results:

X(l)(_w4; @y, W3, W35 t) " [ﬁ m(_wabc)b(wa’ @p, wc)QlO(wabc; t)

vV

abc
+ 1_30' b( = Wgpey Wy wb)m(wc) exXp (— iwabt)Qlo(wc; t) +% Y( — Wypes wa)y(wba wc)

x exp (—iw)Q0(@pc; 1), (22)
2) ) O .
4 (—(1)4, @y, Wy, D3 t) - 93 I—/: S (m(—wabc)m(a)a)
x p(@y, ©) ¥ {3R;o(®,) [Q16(wabc§ )= Q11(055 1]

—R;0(@5c) [Q10(@apes 1) — Q1a(@a; D)}

+ y( — Wypes wa)m(wb)m(a)c)Rlo(wc) [QZO(wbc; t) - QZ l(a)b; t)] €xp ( . iwat))’
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N
2045 01, @3, 0351) = 5 S (- @ g Im(@Im(eo)m(e,)R s of@2)

abe
X {R30(@3c) [Q10(@ape; 1) —Q12(s5 )] — Ry y(9y) [Q1 1(@ap; £) — Q1 5(c0,; N1} (24)

In Egs (22)—(24), we have introduced the time-dependent relaxational functions

ka(a)abc; t) = ka(wabc) [exp (_ iwabct_ ;t") —EXp (" i):I (25)

m/ - Tk

‘G being the operator of symmetrization over the frequencies w,, wy, @,
abc

Eqs (22)—(24) are written in a way to stress the dependence of the electric properties
of the molecule (its dipole moment m, anisotropy of polarizability y, and mean electric
hyperpolarizability b) on the frequencies of the external elcctric fields [5, 6]. The dependence
in question is related with the well known Voigt-Lorentz electron dispersion [15, 16] which
is apparent chiefly in the range of optical frequencies [6], and is of essential importance
in electro-optical effects involving Debye molecular reorientation in addition to electron
dispersion due to the electric field of a laser light wave. The Debye reorientation can be due
to difference frequencies between modes of laser light (the inverse difference frequencies
being comparable with the rotational relaxation times 7,) or to modulation of the medium
by an external slowly variable electric field.

Eqs (20)—(25) represent the chief result of this investigation. They describe the
evolution in time of the process leading, in liquids, to a steady state of third-order polar-
ization under the action of three, in general time-variable electric fields. Each of the tempera-
ture contributions to the susceptibility y(—wa; @, w2, ws; t) (20) given by Egs (22)—(24)
can be resolved into a steady state part and a dynamical part, the former describing the
steady state of the polarization of the medium and the latter its rise in time immediately
after switching on the fields. The dynamical part consists, in addition to terms oscillating
with the frequencies of the externally applied clectric fields, of non-oscillating terms with
exponential time growths, their dispersional properties determined by the factors [17]:

-1
T,
ka(waba) = (1 - "T_k . iwabctk) . (26)

m

For m = 0, these generalized dispersional factors go over into the well known Debye
factors (19), defining dispersion and absorption of third-order polarization in the steady
state, as already discussed in Refs [5-7]. Eqs (20)—(25) are of a form which makes it
possible to analyze directly the time-evolution of the individual nonlinear electro-optical
phenomena enumerated in the Introduction simply by specifying the frequencies of the
electric fields applied. The decay in time of the polarization P& (w,; t) after the fields
are switched off is described similarly. _

The above results provide a consistent description of the time-dependent variations
in nonlinear relaxational phenomena in the approximation of Debye rotational diffusion
taking into account the processes of time-variable polarization which set in when the
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externally applied fields are switched on, or off. This, obviously, is essentially important
with regard to measurements of the dielectric and optical properties of the molecules
by pulse techniques, when the switch-on time of the fields can be of the same order as the
Debye rotational relaxation times,

The above applied method of determining the orientational probability density
function from the equation of Debye rotational diffusion can be extended by taking into
consideration the molecular interactions in the liquid [18, 19], and is well adapted to
application within the more general method of nonlinear response functions [20-22].
1t is worth noting that the probability density function (7) has been applied for the descrip-
tion of the spectral line shape of elastic and inelastic light scattering by molecules of liquids
reoriented by an external electric field [17, 23]; moreovér, a similar formalism can be
used for the description of pulse electric field-induced effects of birefringence in
liquids [6, 24].

3. Particular cases of application of the theory, and conclusions

Let us begin with the case when the medjum is acted on by one, sufficiently intense
electric field E(w). The nonlinear third-order polarization now consists of a part which
oscillates with the frequency of the field, w, and a part oscillating with the tripled frequency
3w. The time variations of the polarizations are described by Egs (22)—(25) with
W =W, =@, O3 = =O, OF @ = Wy = W3 = O. '

For the component oscillating at 3w, we obtain:

N
1 (=30; 0,0, 0;t) = 7 [Z5 m(—=3w)b(w, v, ©)Q;,(3w; 1)
+75 ?(—30), o, 0)m(®)Q;o(w; t) exp (—i2wt)
+75 Y(— 30, ©)) (0, ©)Q,0(2w; t) exp (—iwt)], 27N

1P(—30; 0, 0, 0; 1) = 75 = m(—3o)m(©)y (o, w)

2

% {3R;o(®) [Q10(Bw; ) —Q11(2; )] — R20(20) [Q10(3C{7§ t)—Q12(w§ 01}

N X
+& I Y =30, ®) [m(@)]*Ryo(@) [Q20Q2w; 1) — Q24 (w; )] exp (—iwd), (28)
N
KA(=30; 0,0,0:1) = ~35 - m(=30) [m(@)F’Ryo(®)

X {R20(2) [Q1‘o(3w§ 1)~ Q12(@; )] —Ry1(@) [@11QRw; ) —Q1a2(w; 1)]}, (29)
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whereas for the time-variations of the component at o we get the following contributions:
(1) N 1 5
(o000, -0 1) = v {io m(—o)b(w, ®, —w)Q,(w; 1)

+16 b(— 0, 0, 0)m(—w)Qo(~; 1) exp (—i20t) +1 b(—0, —0, ®)m(@)0;(o; 1)
+1¥s (=0, 0)1°050(0; )+ 135 W~ 0, —0)(@, ©)0Qw; ) exp (inf)},  (30)

1000, —0; 1) = T4 ]; m(—)m(w)y(w, — )
x % {3R;o(@) [Q10(@; )~ Q11(0; D] = Q1 o(w; 1) — Qs 5(w; 1)}
+1is g m(—o)m(—w)p(® ,0) 3 {3R;o(— ) [Q;0(w; 1) — Q11 w; 1)]
—Ry0(20) [Q10(0; )~ Qy2(—~w; )]}

+13% ];V (1=, @)m(w)m(—) [Ryo(—»)+R; ()]

% [Q20(05 ) = Q54(; )] exp (— iot) +7(—w, —w)ym(o)ym(w)

X Ryo(@) [Q20Q2w; 1)~ Q5 4(w; t)] exp (iwf), (31)
N
. 1 -0;0,0, —0;1) = —71g 7 (= w)m(—w)m(w)m(w)

X (R1o(—0) {[Q10(@; ) —Q1,(w; )]~ R, (@) [Q1:2w; )= 0(w; 1}
+R;0(0) {R20(20) [Q1o(@; 1) — Q1 2(— @; )] — Ry (w) [211(0; )= Qy2(—w; 0]}
+R10(@) {[Q10(@; ) —0Q12(0; ] —Ryy(— ) [Q41(0; ) — Q4 5(; H1}). (32)

Eqgs (27)—(32) show that the time-variations are dependent on the relaxation times Ty, Ty
and (in a rather complicated’ manner) on the relaxational factors. Moreover, they show
that the rise in time of the polarizations at w and 3w — which it is our intention to propose
for experimental investigation — is of the form of superpositions of exponentials, depending
variously on temperature, as well as of non-exponential factors:

lim Q,,(w; 1) = 2 exp (— i) (33)

®->0 Tl Tl

For very high frequencies of the electric field (this is the case of laser light) we have
@t — oo and one can assume that

lim Ryw) = lim R,(») = 0. (34)
@T> COI:;":’O
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The only non-zero contribution is, now,

1) = 1¥s g [7(— o, ®)]* exp (—iwt) [1 —exp (—i)] : (35)

T2
meaning that the setting in of the steady state depends on the relaxation time 7, and that
the effect moreover depends on electron dispersion of the anisotropy y(—w, @) of the
linear eléctric polarizability of the molecules. Within this approximation, the rise in time
of third-harmonic light generation, related with the tensor of second-order nonlinear
electric polarizability ¢;;;, does not depend on rotational reorientation of the molecules.

Third-harmonic generation of light has been observed in a variety of molecular
media [25-29]. The feasibility of third-harmonic generation at dielectric frequencies by
unlocalized electric dipoles in paraelectric media has been suggested in Ref. [30].

We shall now consider dielectric saturation in dipolar liguids [2, 4, 6, 31, 32]. The
effect consists in a change in third-order electric susceptibility y(—w; , 0, 0;7) due to
the application of an intense static electric field E(0). The variation can be studied by
means of an analyzing electric field E(w).

Egs (22)—(24) lead to the following time-dependence of the quadratic changes in
electric susceptibility

Ae(w; t)
'Ez‘(‘('))_""%(_wiwa(),oﬂ):
Ads(w; N t
20 b {11+ R xp (o) —[exp (=i + Ruo@] exp (-}
2 NV ) L oR, ()] exp (— iof)— [exp (— iof) + 2R;0(w)] ex (— i)}
+T—I;k—T{[ +2Ro(@)] exp (o) [exp (~ ) + 2Rso(@)] exp ( ~
+1—§?g (Z’T§ {[ +3 Ryo()+ Rao(@) +3 Ryo(@)Ro(@)] exp (—icot)

—[(3+3R; (@) + Ry (w)) exp (—iwt) + 4R o(w) — 3 Ryo(w)+3 Ryp(w)—3R, (@)

+% Ryo(@)Ro(@) — R, o(0)R;o(®)] exp <_ %) -7z <—> Ry o(w) exp ( 1:)

1 T1

+3 [(1+ R, ,(w)) exp (—iwt)

2

+3 Ryo(0)— % Ry0(0) + Ryy (@) — Ry o(@)R,0(w) ] exp (_ ‘Ei>}

N m* ,
e {[Rm(w)+Rm(w)Rzo<w) + Ry o(@R3o(@)R1o(@)] exp (—ie)]

—[4 Ry 1(®) (3+2R;1(w)) exp (—iwt)+% Ryo(@) +% Ry (w)—% Ryy(@)
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4 Ry0(@) — % Rz1(0) +3 Ryo(@)Ry0(0) + Ry o(@)R,0(0)R o) — Ry1(0)Ry1(w)]

X exp (_ ;t“) +[4 Rysx(@) exp (—iwt)—32 R, o(@)+% Ryp(@)—% Ry (w)

1

\
+1 Ryo(@)R;o(@)] oxp ( - ) ~#Ru) (i) exp < - 1)} . (36)
) 71 71
Above, we have neglected the dependence of the molecular polarizability parameters
on Lorentz-Voigt electron dispersion [6].-

By (36), the time-variations of dielectric saturation in liquids depend, in a rather
highly complicated way, on the two relaxation times 7y and 1,. In the following two
particular cases, however, the situation becomes considerably simpler:

(1) if the analyzing electric field is static in time, or if its vibration frequency is low

1
w < N )
T2
(2) when considering nonlinear dispersion and absorption of dielectric saturation
in the steady state i.e. at moments of time ¢ > 7, subsequent to the switching on of external

electric fields (r, being the rotational relaxation time).
In the former case we have the relation:

. k(k+1)
= hm ka(a)) e = =Ty (37)
P k(k+1)—m(m+1)
k#m
with which we derive from Eq. (36) the simpler formula:
4 —t
s((o<12> . N mb 1 zNy2 1
—— ~vs-—Alo<—t)+5 - —Blwo<—;¢
E“(0) V kT Ty V kT Ty
N m? 1 N m* 1
e ——Clo<—;t)—2%= Dliw<—;t}, 38
TE Y Gy ( e ) SV kT 72 G8)

involving the following relaxation functions:

1 t
A<w<——;t)= l—exp(— —>, (39)
Ta Ty
1o Al ; t
B<co <—;t)= 1—exp<— ——), (40)
T2 Ty
1 t t t ty\-
C(q) <€ —; t) =]-2 exp<— ~> +%‘exp(— —) —%(—) exp(— —), (41)
Ty T/ Ty T1 Ty
1 . t : t t t
D(a) «é——;t)z- l—%exp(—— —%;exp(— —) —%(—)exp(— —). (42)
T, T4 T, T T1
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By Eqgs (38)—(42), the time-variations of dielectric saturation for experimental obser-

g 3 ] t £
vation are superpositions of exponential terms and a term of the form <——) exp (— -—) :
' Ty : Ty

They should be accessible to investigation — and hence the molecular relaxation times 7,
and 1, as well — by performing experiments with appropriately chosen nondipolar, or
strongly dipolar liguids.

The relaxations (39)—(42) visualize the competitive roles of the various temperature-
-dependent contributions in dielectric saturation. They show that the rise in time of the
polarization due to permanent dipole moment reorientation is slower than the changes

arbitrary
units

Fig. 1. Normalized time-rise functions for different molecular contributions to quadratic variations in

] 1
dielectric saturation in liquids calculated from Egs (39-(42), versus (———)
T2

caused by reorientation of the anisotropy in electric polarizability of the molecule. Fig. 1
shows the different time-evolutions of the relaxation functions (39)—(42) vs the parameter

t ) . A :
(——) ; the plots were prepared taking 7; = 31, in accordance with Debye’s rotational
T2

diffusion approximation, 7, denoting the relaxation time of electric birefringence [34-36].
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In the latter case (w; !> 7,), the shape of the relaxation functions A, B, C, D
can be calculated either by performing a symmetrization for the frequencies w; = w,
w, = w3 = 0 in Eqs (15)—(18), or by going over to ¢ — co in Eq. (36). We now obtain:

Aw; 1> 11) = 3 [1+ R o(w)], (43)

B(w;t > 1,) = 3 [1+2Ry0(w)], 44

Clw;t > 1) =  [1+43 Ryo(@) + Ryo(@) +3 Ry o(@)Ryo(w)], (45)
D(w;t» 1) =3 [1+R;o(@) + Ry o(@)R20(0) R o(@). (46)

- 1 = 1 1 1 1 I i} i

Vel v V6 V8 W V2 H—2 4L B8 ¥ ok

Fig. 2. Normaliied dispersion 4’, B’, C’, D’ and absorption 4", B”; C”’,- D" curves for different molecular
contributions to quadratic variations in dielectric saturations from Eqgs (43)-(46), versus wrt,

By applying Eq. (19) , we resolve the functions (43)—(46) into a real part, describ-
ing dispersion, and an imaginary part, describing absorption of dielctric saturation
ds(w; t > 14)

E*(0)

The dispersion and absorption functions are plotted vs wt, in Fig. 2.

In order to visualize the evolution in time of the changes in electric saturation following
the switching on of external electric fields, or the evolution of dispersion and absorption
in a system of non-interacting dipolar, linearly polarizable molecules (m % 0, y# 0,
b = ¢ = 0), we introduce (as in Ref. [36]) the dimensionless molecular parameter

m*  m?y 1 m?

Ty Gy TRy D
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For molecules with a small permanent dipole (or non-dipolar ones) r is close to zero.
For strongly dipolar ongs, r differs strongly from zero. The sign of r depends on that of
y = a,,—d,,, the electric polarizability anisotropy.

By (14) we have, on applying Eq. (47), for b = ¢ = 0:

de(w3y N m  2 1>23 vt X Gl - Diw: Db 48
Ez"(b')_“’ 45;@,1‘.,3‘{ (— (w’t)+7 (wa‘t)f (C",,t)}, (48)

and the functions B(w; 1), C(w; 1), D(w; t) go over respectively into (40)—(42), or (44)—(46),
for the two cases considered above. Their explicit form is to be obtained by comparing
Eqgs (48) and (36).

As shown in Figs 3a—35a for positive r and in Figs 3b—5b for r < 0, recourse can
be had to Eq. (48) for performing an analysis of the time-variations or dispersion and
absorption of the electric saturation for molecular systems characterized by different
values of the parameter r. The strongly different time- and dispersional characteristics
of the terms related with the dipole moment and polarizability anisotropy (Figs 1, 2)
cause the responses of systems to externally applied electric ficlds to differ in shape
strongly and thus to render apparent the competitive nature of the various molecular
contributions. Eq. (48) shows that the magnitude of electric saturation, attained by the
system after a sufficiently long time ¢ > 7, subsequent on its immersion in slowly variable

1
electric fields (cu < ———) , amounts to:

T1

EX0) = (T “45)

1
4 < —;t
8(0) <1_1 >‘E1> N m (2 4 )

since now we have:

1 1 1
B<w<——;t>rl>=C<w<—;t>'£1>=D<w<—;t>11>yl. (50)
(31 J 71 ! Ty

Eq. (49) shows moreover that for the two values of r:
ria, =21 /6 (51)

the electric saturation curves.take a rather specific shape. In the case of slowly variable
fields and measurements after a considerable lapse of time, 4¢ becomes zero. We have
de # 0 only in the short time range (Figs 3a, 3b) and for ¢ > 7, when the analyzing fre-
quency is comparable to or larger than the inverse rotational relaxation time (Figs 4a,
4b, 5a, 5b). Also noteworthy and highly characteristic are the dispersion and absorption
curves and time-variations of electric saturation, which- exhibit an anomalous rise or
i
decrease in Ae¢ for certain values of
T2
tions from the dipole moment and polarizability anisotropy and to their different sings. In

or wt, due to competition between the contribu-
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Fig. 3. Time dependence of

———= for some values of the molecular parameter r;(@r>0,
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Ae(w; t> 72)

—]52(0) } for some values of the molecular parameter r; @) > 0,

Fig. 4. Dispersion curves of Re{
(b)) r<0
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Ae(w;t> 1,
== W for some values of the molecular parameter r; (a) r > 0

b r<0

Fig. 5. Absorption curves of Im {
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the case of molecules for which the values of r fulfil the inequality r, < r < ry, the effect
of electric saturation undergoes a change i’n_ sign during the time process whereby the
polarization of the medium tends to the steady state, or if the frequency of the analyzing
field is made to vary appropriately. Similarly, a change in sign is to be observed when
investigating the absorption curves (Figs Sa,-5b).

The nonlinear effects given by Egs (22)—(24) are also accessible to this treatment,
as done in Refs [6, 7] for dispersion and absorption.

Noteworthy are the latest results on electric saturation in liquids [32] and studies {33]
de(w; t > 1,)
E2(0)
g-caprolactam in cyclohexane under the action of an intense static electric field
taking into account dispersion and absorption of the measuring field over the frequency
range from 2 to 100 MHz. It is to be hoped that this kind of work can soon be extended

to time-variations of dielectric saturation.

All in all, from the present considerations, the variations in time of third-order electric
polarization in liquids are characterized by a complicated dependence on the dispersional,
relaxational .and electric properties of the molecules. By having recourse to the model
of Debye’s rotational relaxation, we have obtained in Eqs (20)—(25) a consistent description
of third-order polarization as a function of time. Our results permit a detailed analysis
of the time-evolution of a wide variety of phenomena, as done above for the induction
of fundamental and third-harmonic nonlinear polarization as well as for the process
leading to a steady state of quadratic variations in nonlinear electric susceptibility. The same
procedure can be applied with regard to the evolution in time of relaxation processes,
related with other nonlinear effects.

The present, rapid progress in pulse technique will most probably permit the extension
of dielectric studies of molecules in liquids to the determination of the time-variations of
dispersion and absorption of various nonlinear relaxational processes.

of quadratic changes in the nonlinear electric susceptibility in solutions of
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