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PERTURBATION EXPANSION FOR FLUID USING HARD CORE
WITH ATTRACTIVE PART REFERENCE POTENTIAL:
I. GENERAL FORMALISM

By C. JEDRZEJEK

Institute of Physics, Jagellonian University, Cracow®
(G Récéiveéi May 5, 1976)

In this paper, we develop a perturbation expansion for hard-core with an attractive
part reference potential and the formula for a reasonable choice of its parameters. Qur
formalism is a modification of the Barker~Henderson one applied in the case of the hard-
-sphere reference system. We also discuss a possible use of our method, mainly owing to
the existence of Waisman’s analytical solution for hard-core with the Yukawa part potential.

1. Introduction

Perturbation methods now provide a comprehensive theory of classical fluids [, 2].
In these methods the hard-sphere system is used as the reference potential because for such
a system there exist extensive simulation data [3] and the analytical solution of the
Percus—Yevick equation 4] is known [5]. Moreover, this solution is fairly exact.

Commonly in the perturbation theory of the Barker-Henderson type two terms up to 72,
where T is the temperature, are retained. Use of a potential closer to the real one (i.e.
having, besides the hard core, also an attractive part) as a reférencie'potential should be
more practical because of faster convergence of the perturbation series. Probably, to a reason-
able approximation in this case, terms of an order higher than first one may be neglected.
The problem was that properties of any such type of system have not been satisfactorily
known up to recent times. ‘ '

However, recently Waisman [6] obtained an analytical solution for hard core with
the Yukawa tail potential in the mean-spherical-approximation (MSA). A system with
the same potential was next analyzed in detail by Henderson, Stell and Waisman [7].
It seems that when taking advantage of this potential as a reference system the use of
our method is particularly simple and gives good prospects.

* Address: Instytut Fizyki, Uniwersytet Jagielloniski, Reymonta 4, 30-059 Krak6w, Polend.
(3)



2. Perturbation expansion in series of inverse temperature

Wezconsiderz"the total potential to be a sum of two-particle potentials in the form
u(r) = up(r)+iu(r), 0<<Ai<1, 6))

where u,(r) stands for the reference potential part and u;(r) is treated as a perturbation.
The configurational part of free energy can be expanded in the Taylor series in 4; after
A = 1 is set which recovers the original potential. This technique was first applied by Zwan-

zig [8]. The procedure is as follows:
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where 44, is the contribution to free energy from the reference potential, U; = Y. u;(ri;)
i<j

and {...»; o denotes mean vaiue using a system interacting through potential u,(ry and

uo(r), respectively. Next, U, (r") is expanded in A and integrated term by term which leads to
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As a matter of fact, it is the expansion in S(8 = 1/kT)
44 = Y, A, @

n=0
The first term of this expansion contains the radial distribution function of the reference
system, gofr)
A
B~ 1o faraaom,, ©
where ¢ is a number density. The second term contains the four and three-body correlation
function which are very difficult to handle.

Using the hard-sphere reference system one cannot make the expansion directly
because no part of original potential agrees with the hard-sphere one. Actually the expan-
sionis a two-stage one. First the original potential is divided into two part, one being a refer-
ence part, u#y(r), and the other a perturbation one, u;(r). Then properties of the reference
system are approximated by a properly chosen trial hard-sphere system, ups(r), which is
used in perturbation expansion directly [1, 2].

Barker and Henderson accomplished such a type of expansion after introducing
a modified potential function [9]

uld+(r—d)fe], d+(@—d)ja< g,
E(dy Hy &, %") =40 s M <d+(r—d)/a < d+(u—d)/0€, (6)
yu(r) , U<r
For « = y = 0 the potential defined by Eq. (6) becomes the hard-sphere potential of di-
ameter d, for « = 9 = 1 we have the original potential. The parameter o characterizes the



steepness of modified potential in the repulsive region while y describes its depth in the
attractive region. Their procedure lies in the expansion of the configurational integral in
o and y about the point « = y = 0, which corresponds to the hard-sphere potential. In the

result they obtained
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The parameters u and d are defined as follows B
u(u) = 0, (8a)
d= _‘[;dr{l—exp [=pBu(r]}. (8b)

Such a choice is unique and although it is not essential to the procedure, it gives the-

best results.
It is widely known that Barker-Henderson’s expansion is successful because real

potentials are steep for » < u and effects caused by the attractive part of the potential
on the structure of liquid are small.

3. Expansion using hard-core with attractive part reference potential

We are going to obtain a method giving the unique way of choosing appropriate
parameters of hard core with attractive part reference potential. We define a modified
potential as

Ju[d+<r—d>/a] , d+(r—d)je < p,

(1= Dteeel(r) s b < d+(r—d)ja < d+(u—d)fx, (9)
_yu(r)+(1_C)uref(r)’ p<r,

where u,.¢(r) denotes the reference potential. In comparison to #(r) (Eq. (6)) v(r) comprises
one parameter more, which takes into account the depth of the reference potential in the
attractive region. For a = y = { = 0 the modified potential becomes the reference one.
For « =y = { = 1 the original potential is reproduced.

To facilitate the evaluations we define function exp [— fv(r)] (we omit further the rest
of the arguments for simplicity)

exp [ — ()] = [1‘—0 <a?gr r_;‘f = u)] exp [— Bu (d+ f%‘f)]
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o(d, u,a,9,{;r) =

+0(r —p) exp { — BLyu(r) + (1 = Duee(r) 1}, (10)
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where 0(x) is the Heaviside step function. The configurational integral for a system of N
particles is defined by the equation

Oy = (NDT fdr¥exp [—B ¥ o(rip]- (11)

Now we calculate (as Barker and Henderson did) the derivative of In Qy with respect to
Xe (a = %2 =9 %3 = ¢)
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where g(r) corresponds to the radial distribution function of the system interacting through
potential v(r) and y(r) is

¥(r) = exp [po(r)] g()- (13)
Next, we calculate 0 In Qy/0y; with respect to particular y,. For y; = o from Eq. (10)

we get
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where d; = d+oa(u—d). After introducing a new variable of integration defined by
z =d+(r—d)fo (16)
we obtain
Jln Qy %) : : . .
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In the limit as «, y, { = 0 we obtain
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where #,.(ds) stands for the right-side limit of the reference potential at r = d. We may
do this because ae[0,1] and lim u,¢(d;) implies lim #,.(r). On the other hand putting

a0y ) p—dy . .
y(d) = y(d,) when y(r) is discontinuous at r = d involves only a certain interpretation,

because as is seen from Eq. (17) the expression y(d+ o (z—d)) under the integral becomes
in the limit & — 0 ¥(d;) or y(d-) according to z and is greater or smaller than d, respec-
tively. This point will be discussed in detail in Sec. 4.

The derivatives of In Qy with respect to y and { are calculated in a similar way with
the result

o1
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Full expansion can be written as
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In this formula A corresponds to the configurational free energy of the system, which
interacts through potential v(r) and A, through u. (r). Putting « = y = { = 1 leads
to the expression for free energy corresponding to the original potential u(r).

We turn next to the choice of reference potential parameters. Following Barker and
Henderson [9] the simpler choice of p is

u(p) = 0. (22)
Equating to zero the terms of the first order in Eq. (21) implies

d = p—exp [urdy)] 5 dz exp [~ pu(2)], @3)

}' drgref(r)rz[e(r—u)u(r)_uref(r)] = 0’ (24)

and when neglecting the terms of the order higher than the first

lj‘_‘l_=ﬁAref
N N

25)



Eq. (9) does not state precisely what is the perturbation uy(r) in the region d < r< p,
because the reference potential is the hard-core one. The most natural way is-to specify
uy(r) as

uy(r) = u(r)—u(r), r>d. (26)

However, the term containing u(r) is integrated in Eq. (21) from the limit p rather than d
(analogically to Barker-Henderson theory) so the proper choice is

—uref(r) ,d<r< U,
uy(r) = (27)
u(r)—uref(r)ﬂ F>

Each potential having a hard core with an attractive part is described at least by three
parameters: d, the diameter of hard core and the remaining two indicating the depth and
range of the attractive part. Through Eqs. (23) and (24) we can specify two of them so
unless the third one is not fixed from the beginning, it remains free. We have the possi-
bility of making the best choice by using a variational method.

It can be shown [10] that the last term in Eq. (3) is negative and
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According to Egs. (23) and (24) in our case
A A
e < » ref (29)
N N

and we can choose the parameter which is at our disposal, so that the right side of in-
equality (29) attains minimum.

The proposed expansion enables us to calculate free energy. One can easily evaluate
the radial distribution function through the known virial-perturbation methods [2, 111
taking advantage of calculated parameters of the reference system.

4. Final remarks

Recently Waisman [6] obtained the analytical solution for potential

0 yx <1,

—eexp [—z(x~)l/x, x > 1, 30)

) = {
where x = r/d, in the mean spherical approximation. The problem is how exact are the
results of the solution Waisman gave.

. Results in perturbation theories depend both on the method of expansion and accuracy
of a used reference system. It may turn out that the advantage of having a reference system
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closer to the real potential in liquid in comparison to the standard hard-sphere system can
be cancelled by defects of approximate solution in calculation of A,. Then for example
inequality (25) which holds for a true function may not be satisfied for an approximate
function (A4, may not attain a minimum for physical values of the parameters).

There is one further point worth considering. It regards function ¥(r), the knowledge
of which (at point r = d) is necessary in our formalism. When the hard-core system is
considered one need not know y(r) inside the hard-core region to calculate g(r) and c(r),
where ¢(r) is defined by the Zernike-Ornstein equation

g ~1 = c(r)+o | [g(r)—1]e(lr—r'dr". 31y
Inversely, knowledge of g(r) and c(r) is not sufficient to calculate »(r) inside the hard-core
region.
To illustrate this we introduce function d(r) and e(r) given by
e(r) = [e(r) ~ 11 y()+d(r), (32
e(r) = exp [~ fu(r)]. (33)
Henderson, Stell and Waisman [7] showed that when e(r) = exp [—Pupc(r)] is assumed,
where uyc(r) is the hard-core potential, and d(r) = — Bw(r), where w(r) is a soft pair
potential added to uyu(r), then MSA is obtained. Because c(r) and g(r) are specified
uniquely in the whole range of r by the requirement g(r) = 0, r < d, and c(r) = —Bw(r),
r > d, a change of d(r) inside the hard-core region influence only y(r) in the same region.
Assuming that d(r) = —pw(r), r < d, one obtains a discontinuous yr)yat r=d
because equation
g(dy) = Pe—c(d), (34)

which holds for the Yukawa potential [6], cannot be fulfilled together with the require-
ment of continuity of y(r)

g(d) = [Pe—c(d)] exp (Be). 3%

This is a serious defect of MSA because the genuine function »y(r) is continuous even for
potential with hard core.

One way to avoid the difficulties with the discontinuous function »(r) is to assume
that MSA refers only to functions g(r) and c(r). Then y(r) inside the hard core is to our
disposal and in particular we may make it continuous. An other way is to improve the
MSA solution for Yukawa potential similarly as it was done in the case of the hard-sphere
system [12]. Unfortunately the simulation data for the Yukawa potential are not yet
known.

In a subsequent paper our method will be applied to calculation of properties of the
Lennard-Jones fluid.

I'would like to extend my appreciation and thanks to Professor A. Fulifiski for many
helpful discussions and comments.
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