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A NEW LOOK AT THE EVALUATION OF CARTESIAN
SYMMETRY COORDINATES IN MOLECULAR VIBRATIONS.
APPLICATION TO NORMAL COORDINATE ANALYSIS
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A new method for evaluating symmetry coordinates for molecular potential function ¥
expressed in Cartesian coordinates is described. The transformation which factorizes ¥V is
represented as a Kronecker product of N- and 3-dimensional matrices: a simple method
of finding these matrices is also described.

The problem of redundant coordinates does not exist in this proposed method.

1. Introduction

In 1939 and 1941 Wilson [1, 2] showed how to express the kinetic energy of any
molecule in terms of the time derivatives of bond-length changes and interbond angle
changes. Essentially all normal coordinate treatments published since that time have
expressed potential functions in terms of interbond angle changes and bond-length changes
and have used the Wilson F~G matrix method to set up the secular equations. However,
in 1965 Pariseau, Zuzuki and Overend [3] used mass-weighted Cartesian coordinates in
their study of the anharmonic potential field of small molecules. Next, in 1971, Tyson,
Classen and Kim [4] developed a straightforward way to derive the necessary potential
matrices for any XY, type of molecule with » bonds to a central atom X. In their work
it proved to be convenient to use Cartesian coordinates rather than internal coordinates.
The procedure outlined in their paper may seem to ignore molecular symmetry and the
possibility this provides for the factorization of the secular equation, because the emphasis
is on a physically meaningful force field model. For this, they do not need symmetry co-
ordinates. In [5] Gwinn has described a method of performing normal coordinate analysis
using Cartesian coordinates, which is more suitable for use with electronic computers
than the current methods, but he has not considered group theoretical aspects in detail,
as well. In the present paper we propose a simple method of finding symmetry coordinates
for molecular problems expressed in Cartesian coordinates (corresponding to the com-
putational method used in [4, 5, 6]).
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2. Basic theory

Let G = {g} be the point symmetry group of an N-atomic molecule. The vibration
of this molecule (including translations and rotations) are specified by the vector x in the
3N dimensional vector space LY. The Cartesian displacement coordinates in the column
matrix, x, where xT = (x;, X2, ... Xy) = (X1, X, X3, X4, ... X3y) are defined in the usual
way so that x;, X, and x5 are the x—, y— and z-displacement coordinates, respectively,
from the equilibrium point of the first atom, x4, x5 and x¢ similarly refer to the second
atom, efc., up to xsy the z-coordinate of the N-th atom On the vector space L*" is defined
also the representation T(,) of the group G.

If we want to find the symmetry adapted basis in LY, following the standard method
[7, 8] we ought to construct the well known projection operators,

P, = !} dg Tmm(g) T(%v @

wWhere Thm) = Thm(g1 is the diagonal (m, m) th element of the irreducible representation

. .. . 1
I'"of G, and operate them on a given basis in L*". For ’a finite group | dg— .
* order G
G geG

However, in more complicated applications, from the practical point of view using equa-
tion (1) can present formidable problems because the size of T| (g) ¥ matrices is considerable.
Operating with these large matrices is very difficult, very time-consuming and subject
to error. Below we outline a simpler way of constructing the set of symmetry adapted
coordinates for a given molecule.

It is well known that every operation g € G induces rotation (reflection, inversion)
and permutation of the displacement vectors x; in x.

Formally, we can write T(f,’)v as a direct product,

T(g) = (9)® T(g) (2)

where

T(g) — is the N-dimensional permutation matrix which takes x; into x; (i. e. which per-
mutes the displacement vectors in x in the same way g € G permutes the atoms of the
equilibrium molecule), Ty, —is the 3-dimensional transformation matrix which describes
the effect of the symmetry operation g € G on the displacement vectors x; (i. e. which
describes the change of the directions of these displacements x; under g € G leaving the
atoms in their equilibrium positions in the molecule) From.(2) we obtain automaucally
a useful relation for the characters x(g), Xy Xy Of the reducible representation Toy,
Tay T¢, respectively:

‘3N 3 :
Xy = XX 3

This in itself represents no innovation [7,8] and [16]. It is worth to note here that
formally we can write:

N — LN®L3 (4)
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if L¥ and L*® are the carrier spaces of the representation T, and Tg, of G, respect-
ively.

The innovation of the present paper relies on the fact that we do not construct the
symmetry subspaces in L*" in a straightforward manner, operating the large matrices T,
but we reduce the spaces LY and L3 separately. Then, in our method, the construction of
the symmetry adapted to the G basis in L*V is a two-step process: first, from a gives basis
{eM}in LG = 1,2, ... N) and {es} in L? (x = 1, 2, 3) we construct the irreducible sub-
spaces in sz and L3 separately, and, second, we find the symmetry adapted basis in L3N
as the Kronecker product of the symmetry adapted basis vectors {e};}in LY(j = 1, ... n,;

B fdg Hopty) and {e3} in L* (' = 1, y = Jdg Ko io):

In other words, knowing the symmetry adapted basis {e};} in L" and {eJ;} in L3 it
is possible to obtain simply the symmetry adapted basis {e}";} in L3(j" = 1, ... n;
ny = [dg x(";;x(agl)") performing the Kronecker product (see Appendix A):

G

{e3®{ey} = (&%), ©

The procedure for the reduction of the L3 space is trivial (one operates only 3-dimen-
sional matrlces) a systematic method for accomplishing the reduction of the LV space
(or the T(g) reducible representation) will now be described.

Reduction of the LY space

It is possible to achieve a high degree of simplicity of the reduction of the LY space
if we note the obvious fact that, when the atoms are permuted among each other after the
operation g € G, only identical atoms (nuclei) are interchanged. Suppose that among

)4
N-atoms of the molecule there are n; atoms of the same kind k (k = 1, 2, ... p; Y. = N).
k=1
For example, for nitromethane CH;NO, we have:
ne=1,ng=3,ny=1,n,=2; Ne+ny+ng+ne = 7; p =4

Therefore, we can write

P
To = ® T (6)
k=1
and, using (1)
p
Py = [ dgtimoTiy = @ Py ™
where
Py = !} AgTrme) T(g)- ®

It is therefore shown, that a symmetry adapted basis in L" can be constructed using
m-dimensional matrices.
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3. Simple example

This section is intended to illustrate, on an extremely simple example, the ideas set
out in the previous pages. '
Consider the C,, bent symmetrical XY, molecule (Fig. 1).

Cap | Xig) | Xy | Xig1 |
z e | 3 9
el 11 {1 |1
Gxr | 1 | 1 | 1
6,3 | 1 |3
3
7 2 Y

X

Fig. 1. Bent symmetrical XY, molecular model (symmetry Cz,) and characters of the reducible represen-

. 3 3
tations T(,,l;’, Tg), T(g)

Using the common group theoretical formula 7, = j;(_(’;)x(y) for finding the irre-
G

ducible representations of T(zz)v R T(’Z R T(‘:’,) we have,

Tj) = 24, +B, (10)
’.T(:;) = A.1 +B1 +Bz. (11)

Of course, in agreement with (2) and (4),

(2A1 +B2) ® (A]_ +Bl +B2) = 314.1 +A2+2B1+3Bz.

Reduction of the L3? space

With the geometrical interpretation of the C,, point group we instantly find the
symmetry adapted basis in L3:

0 1 0
e3, =10], e, =|0], ey, =1} (12)
1 0 0

Of course, the same results can be obtained formally by using equation (1).
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Reduction of the LY space
Operating with the projection operators (7) or (8) on the reducible basis {e}'} in
L¥N =3, i =1, 2, 3) we construct the symmetry adapted basis in LY.
1 1 0 1 1
N N, N
eA,1=——_(e1+e2 = — = 0 + 1 = -1
2 V2 V2l

A 0 0
0
eAl’z—eI3V= 0
1
1 0 1
1] 1
ey, = —= (el —¢e) =0 —-{1]t=—=<(—-1}]. (13)
V2 v2\o/ \o/] 2\ o

In other words, the atom number 3 (Fig. 1) is not permuted for every g € C,,, therefore,
the vector ¢} which represents this atom in LY space, belongs to the 4, symmetry space.
Atom number 1 and 2 are permuted under the operations {c,,, C3} € C,, then operating
with the projection operators (7) on the vectors e} and e) which represent these atoms
in LY space, we obtain eﬁi; 1 and eﬁz (for the characters of irreducible representations see,
e. g., reference [2]).

Reduction of the L3 space

The symmetry adapted basis in L*¥ is found automatically in agreement with equa-

tion (5):

AN L3 s 0 5 1 s 0
v ®\ eq, =10 eg, =10 ep, = |1
1 0 0
AN
N 11 3N 3N 3N
€45,1 = =11 €4y,1 €By, 1 By, 1
2\o
N 0 3N 3N 3N
€45,2= |0 €4y, 2 B, 2 €8s, 2
1
1
ep, = _1= —1 Ay AN 3N
\/2 0 By, 3 Az €44,3
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4. Application to normal coordinate analysis

Consider the D, linear molecule of the type XY, (Fig. 2).
The model for the molecule that we consider is the one that Heath and Linnett [9]
suggested and designated the orbital valency force field (OVFF).

J 00,r)
m

Rp=2n,

; 5) mfo,o,-r.,)

Fig. 2. Coordinate system for the linear XY, molecule

This model, as was shown [9, 10, 11, 4] to be a very satisfactory for symmetrical XY,
molecules. In our case, the assumed potential function for XY, linear molecule is

2 2 2
2V =K Y Ar?+2roK’ Y, Ar,+FAR?,+2RoF' AR, +13D Y. B} (15)
i=1 i=1 i=1

with the common assumption K’ = 2F’ [4].

The notation is fairly standard as it is used in most Urey-Bradley treatments: f; is
the angle between the actual position of the i-th ligand atom and the direction where the
i-th orbital is centered when the orbital energy is minimized (the notation is the same as
that used in [4]). The potential function (15) expressed in terms of Cartesian displace-
ment coordinates is elsewhere [4, page 3148] as the potential-energy matrix 4 : 2V =
= xTdx. ‘

The secular equation in the Cartesian coordinates is the following

|M-*A—-21 =0 (16)
where
M is the diagonal 3N'x 3N matrix of atomic masses [12]
I — unit matrix.

The next step is the construction of the symmetry adapted basis in L*" space, in agreement
with the procedure outlined above.
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Using the common group theoretical method [13] we have,
T = 20,+22; +1,+%;
T = 237 +5;

T = M, +2; . an
Of course, in agreement with (2) and (4),
Q) +IDOU,+E)) = 20, +25, +1T,+5;. (18)

With the geometrical interpretation of the D, point group we instantly find the
symmetry adapted basis in L3

1 0 0
ei]u,l = ei =10 ) elalu,Z = eg =|1 ) e;"‘u = eg =10/ (19)
0 0 1

In the LY space, the atom number i is represented by the vector eY. Operating with
the projection operators (7) on the reducible basis {e}}in LY (N = 3, i = 1, 2, 3) we con-
struct the symmetry adapted basis in L":

1 1 { 0

N N N N
ey+ 1 = €1 = 0 5 eZ"‘g,z = — (eg-l-e?' =—11
’ ' 0 \/2 \/2 1

1 0
e§+,, = ﬁ(eg—eg) = ﬁ 1).
-1

The symmetry adapted basis in L is found in agreement with equation (5).

Factorizing the matrices 4 and M-! in these symmetry coordinates one can obtain
three non-zero, separate secular equations:

I,:| —4F'+2D . /2(2F'-D) ir|2k . 2K
M ’ M M 7 M
~ =0 _ =0
J2(Q2F -D) —2F+D , -J2K K
m ’ m | m 'm
It | K+2F
A Ry Y @
m

At last, we obtain the force constants by solving equations (21)
Mm
© M+2m
F =4 (mize,~K)
Mm

D—-2F = :
M+2m A

b

Ay
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where A, = 4n®v? the frequencies corresponding to the normal coordinates (y = X,

+,oI).

The values K, F and D—2F" calculated in agreement with (22) for typical linear mole-
cules XY, are given in Table 1.

TABLE I
Calculated orbital valency force constants for XY, linear molecules (milidynes per angstrom)
Vot v o+ 274
2z, P u ’
Molecule ( cn:-l) © Hf_l) (cm-1) K F D—-2F
CO, 2349 1388 667.4 14.2 2.0 1.14
CS, 1532.5 658 397 6.95 0.6 0.47

The value of the usual bond-stretching force constants K are in excellent agreeme;t
with the early results [15]. For the separation of translations and rotations see Appendix B.

APPENDIX A

It is well known [14] that, generally, the Kronecker product of irreducible represen-
tations I', and I', of a given group G is reducible (if 7, and n, > 2). Therefore, in the
case when as the LY as the L3 spaces simultaneously contain the irreducible subspaces of
dimension higher than one (n, and n, >2) it is not possible to obtain the complete
reduction of the L*" space on performing the Kronecker product (5), although the L" and
L? spaces are reduced completely.

In this case we ought to use the Clebsch-Gordan coefficients for a full adaptation
of the L3" space. The usual procedure for this is described in detail, e. g. [14].

The orthonormal basis {2} (@ = 1,2, 3) in L? and {e} (i = 1,2, ... N)in LY is de-
fined in the usual way: 3 = (1,0,0) ... €3 = (0,0, 1); ¥ = (1,0 ... 0), ... ey = (0, 0,...1).

APPENDIX B

If we want to separate the translations and rotations of our molecule as a whole,
we construct in LY another set of the symmetry adapted vectors as following,

1
~ 1
eg*fg,l = \/ (ez+g,1 +\/2 ez+g,2) \/3
1
. 1 (72
eg-rg,z = \/_( —2- e;+g,1 +J2 e};+g’2) :/_6 i
0
1
~N - N
Cyiy = €y+y = —= 1
AN
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Then, for the symmetry adapted basis in L3> we have

\\ I3 5 1 5 s 0
N ® m,1 =10 em,2 = |1 ez: =10
AN 0 1

~N, 1
el‘y,] = 33: 1 Ty Ty T
1

~N 1 (=2 3N 3N 3N
eri,=—= 1 e, et , eyt
N
1 0
~N 3N
z z z z

}B X L X gg X
a) o) 2 @
#{11l8) #7)o() #t70(8) el
7. =k z5

Fig. 3. The set of the pure vibrational symmetry adapted basis vectors for the linear XY, molecule

The set of the pure vibrational symmetry adapted basis vectors is shown in the Fig. 3
a, b, ¢, d. This result is, of course, well known [15].
The author would like to thank Docent dr E. Kluk for helpful discussions.
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