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Using the free-spin-waves approximation (FSWA) the influence of a homogeneous
external magnetic field on a two-sublattice Néel-type uniaxial Heisenberg ferrimagnet with
positive isotropic and anisotropic exchange interaction between the sublattices is considered.
Two special cases are examined, namely, when the field is parallel (longitudinal) and perpen-
dicular (transversal) to the anisotropy axis.

In Part I, the field-dependent approximate ground state of the system is obtained by
minimizing the expectation value of the spin Hamiltonian in the class of sublattice satura-
tion states, and the system is shown to have two stable magnetic phases in the longitudinal as
well as transversal field cases. The double-branch spin wave energy ‘spectra in each phase
are determined by diagonalizing the Hamiltonian in the FSWA by means of Bogoliubov's
transformation. In the transversal-field case, the critical field for the transition from the
canted-spin to the paramagnetic phase, obtained in an earlier paper from the stability
conditions for the ground state, is shown to coincide with that following from examining
the reality and positiveness of the energy spectra. In Part II, the dependence of the total
and sublattice magnetizations and susceptibilities on the field and temperature is studied
in the long-wavelength low-temperature approximation.

1. Introduction

Ferrimagnets (in the sense definied below) belong to the class of magnetic crystals
characterized by a spontaneous parallel alignment of (atomic) magnetic moments below
a certain temperature (the Curie temperature).

Ferrimagnetic are, for example, some compounds having the perovskite structure,
e.g., FeN(Fe);, NiN(Fe); [1]. In the literature the term “ferrimagnet” is frequently used
to describe a large class of magnetic crystals which differ from ferromagnets not only
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by different magnetic moments in the respective sublattices but also by the arbitrary sign
of the Heisenberg exchange integral. Accordingly, the alignment of the magnetic moments
(i.e., effective atomic spins) in the (approximate) ground state may be either parallel or
antiparallel (some authors include even materials with non-collinear spin configurations
in the ground state). Since the latter group (i.e., with antiparallel spin configuration) is
also called ““antiferrimagnets”, we adopt Smart’s [2] more precise terminology and use
the term ““ferrimagnets” exclusively for the first group to which the considerations in the
present paper are restricted.

Although the theory of ferrimagnetism is based on the same principles as that of
ferromagnetism, it is incomparably less developed. The first theoretical investigations
of (in the broader sense) ferrimagnets are due to Néel [3] who applied the molecular
field approach (cp. also [4, 5]). Later, ferrimagnetism has also been examined by other
theoretical methods. By employing the quasiclassical Keffer-Kaplan-Yafet spin wave
approach, it was analised by Cofta [6] who proved that the spin wave dlspertlon law
has in the long-wavelength limit the form w(k) ~ k. The same result has been later ob-
tained in [7] for the three-dimensional case. Similar results have been derived by Kubo [3],
by somewhat different methods. Dyson’s spin wave approach has been first applied to
an isotropic ferrimagnet with external magnetic field by Kocifiski [9] who proved that,
similarly as in ferromagnets, the dynamical interactions between spin waves can be neglected
in the long-wavelength low-temperature limit. We may also mention that the spin wave
method has been applied by Saefiz [10] and Wallace [11] to examine .multi-sublattice
magnetic systems with » magnetic ions in the unit cell, by taking into account in the
Heisenberg spin Hamiltonian the interactions between all the magnetic ions of the unit
cell themselves and the external magnetic field. The authors showed how the Hamiltonian
can be diagonalized in the free-spin-waves approximation, and that it leads, generally,
t0 a spin wave energy spectrum composed of 7 branches. A similar problem has also been
solved by Kowalewski [12]. Dyson’s spin wave theory has also been applied to two-
-sublattice ferrimagnets with cubic symmetry by Szaniecki [13] and Szweykowski [14].
In both papers, the corrections to thermodynamical quantities due to spin wave inter-
actions have been calculated. The temperature-dependent Greens functions technique
has been applied to two-sublattice isotropic ferrimagnets by Izyumow and Medvedev [15].

Recently [16], the thermodynamic properties of a ferromagnetic binary alloy with
two atoms per unit cell (equivalent to a ferrimagnet) has been studied using the isotropic
Heisenberg model, in order to determine the effect of the optlcal spin wave energy branch.

As is seen from the above survey, among the rather few papers devoted to ferri-
magnetism only two considered anisotropic materials [6, 7], and even then in a quite
phenomenological way (effective anisotropy field). Furthermore, in view of the recent
refinements achieved in the spin wave theory of magnetic crystals [17-26] the case of
ferrimagnetism certalnly deserves new attention, particularly as regards the examination
of the stable magnetic phases in the presence of an external magnetic field. A case in point
is the newly discovered and extensively studied [27-34] second-order ferro-paramagnetic
phase transition in uniaxial single-domain ferromagnets under the influence of a trans-
versal magnetic field.
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We thus examine a single-domain uniaxial two-sublattice Néel-type Heisenberg
ferrimagnet with nearest-neighbour (inter-sublattice) exchange interactions, in the presence
of a homogeneous external magnetic field. We consider in detail two extreme cases when
the field is either parallel or perpendicular to the anisotropy axis (longitudinal and trans-
versal field, respectively).

While restricting the considerations in the present paper to the free-spin-wave approxi-
mation (FSWA), in Part I the stable magnetic phases and the critical fields of the system
are determined and the respective spin wave energy spectra examined. It is shown that
in the transversal-field case the zero-temperature critical field for the “ferri”’-paramagnetic
phase transition as determined from the spin wave energy spectrum coincides with that
obtained in a former paper [22] from the stability conditions for the system’s approximate
ground state. In Part II, the low-temperature thermodynamics of the system in the FSWA
is given, while the influence of spin wave interactions will be considered in a separate
paper [35].

It appears that a positive uniaxial anisotropy (magnetically preferred plane) leads
to qualitatively different results. Hence, this problem is also deferred to a subsequent
paper [36].

2. The Hamiltonian

We assume the following spin Hamiltonian for our system:

# =13 G5 +85,+25:5) ~mH T 8;—1H Y. §, )
39> f g

where I is the (positive) nearest-neighbour éxchange integral, Z = K/I with the anisotropy
constant K assumed to be positive, u, = g,u is the effective atomic magnetic moment in
the n-th sublattice (n = 1, 2), g, are Land€’s splitting factors, u denotes Bohr’s magneton

s S
]

Fig. 1

and H the external magnetic field. The subscripts f, g denote lattice vectors in the first
and second sublattice, respectively.

Taking into account the spatial symmetry of the Hamiltonian (1) we may, without
loss of generality, put H, = 0.

Similar as in [22], we introduce in each sublattice a local coordinate system whose
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z-axis is the direction of spin quantization. We perform the following rotations of the spins
in the plane x0z (Fig. 1):

S’jﬁ = S} cos 0; + 8% sin 6, 5;‘ = Sy cos 0,+S; sin 6,
81 =5 i =S,
87 = —Sjsin 0, +57cos 0, 5 = —Ssin 0,+5% cos 0,. )

With the spin deviation operators
Sfi,y = S;,yiis},y 3
the Hamiltonian (1) takes upon the transformation (2) the form

H = —1 ) {S7S)(Zcos b, cos,+sin 0, sin 0,)+ ¥ (SfS;+S; S x
(9>

x (cos 0, sin 0, —Z sin 0, cos 0,) + % (S%S; +S%S;) (sin 6, cos 8, —Z cos 0, sin 6,) +
+ 4 (S7S, +S5;8,) (Z sin 0, sin 0, +cos 6, cos 0,—1)+ 1 (S;S; +S}S;) %
X (Z sin 0, sin 0, +cos 0; cos 0, +1)—pu,{H, Y [SF sin 0, + % (S} +S;) cos 6,]—
7
—H, Y [S7cos 0;— % (S7 +S;) sin 0,1} —p,{H, Y. [S; sin 0, +
f g
+ 3 (S, +5,)cos 0,]—H, Y, [S; cos 0,— % (S, +S,) sin 6,]}. (€))
g9
We pass to the Bose representation by means of the Holstein-Primakoff mapping [37]:

(Sf)+ . S; = (251)%97(’%)“;', S; = S;—ny;

St =8, = (252)%<p(ng)bg, S; = S,—n, )
where
o(n) = (1— 2~"S’—1)% pn) = (1~ 2"?“2)%;
. np=afa;, n,=bb, ©
and
[a5,a7] = 07p  [bgs by = 8y ™

The commutators of other combinations of Bose operators are equal to zero.
Substituting (5) into (4) and expanding (6) in a power series,

nf y
o(ny) s, “o(n,) T ®
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we can write the transformed Hamiltonian in the form
H = Ho+H1+H ... )

where S, is a linear combination of products of n Bose operators.
Let us introduce the Fourier transform of a; and b,:

a; = N~% ; eikfak, bg = N~% ; eikybk (10)

where k are wave vectors and N is the number of (magnetic) sublattice sites. Then, we
obtain for #y, H,, H,:

H#Ho = —d(Z cos 0y cos 0, +sin 0, sin 0, +h, sin 0, +h, cos 0, +
+1ch, sin 0, +xk, cos 0,) 11

where
d = I|NS1S3, & = 385/13S1, by = pyH, ,/S,1, T = zI with z as the number of nearest
neighbours;

Hy = Ag(ao+ag)+By(bo+bg) ' _ 12)
where
4o = } (2NS,)*ISy(Z sin 0, cos 0, ~cos 8, sin 0, — h, cos O, +h, sin 6,),
By = 1 (2NS,)*IS,(Z cos 0, sin 0, —cos 02 sin 0, —xh, cos 0, +xh, sin 0,); (13)
and
Hy = my ; ag ay+m, ; by by+m, ; y(ag by +abt) +

+m, ; wlay bl +ab_y) (14)
where
my = IS,(Z cos 0; cos 0, +sin 0, sin 0, +h,, sin 6, +h, cos 0,),
my = IS4(Z cos 0 cos 0, +sin 0, sin 0, +xh, sin 0, +xh, cos 0,),
my = — 3 I(S,5,)*(Z sin 0, sin 0, +cos 6, cos 0, +1),
my = — 3 1(S,S)(Z sin 0, sin 0, +cos 6, cos 0, —1). 15)

3. The stable magnetic phases and critical fields
The angles 0, and 0, are determined from the necessary minimum conditions

GES Y 4 . N .
V] _0_ = 0, e#o = ‘#O/NSISZI (16)

00, a0,

which have the following field-dependent solutions:
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I. For the case h, # 0, h, = 0 (field parallel to the easy axis) we obtain:

1) sin 6, =sinf, =0, 1
2) cos 0; = (R'+KZ)h,[|wl, cos 0, = (KR +Z)h,[|w]| (18)
' 2h2 S
where R’ = l—vﬂ-l—-x—zf and w=Z>—1.
Tt Iw|+h;

From the sufficient conditions

P, PHy _}(a%o )2 PH,

A4 = >0 19
66,06 00,00, 00,00, 00,00, (19

it follows that in the case K > 0 the solution (17) corresponds to a minimum of #,
and that

—Z(c+1) + V22 + 1)  —duciw] _

3)91=92=0f01‘hz>
2K

—h;. (202)

b) 6, = 0, = = for h, < h,. (20b)

Hence, for \h;| > h,. the spins are always parallel to the field whereas for |h,| < k.
they can be either parallel or antiparallel to it.
For the (approximate) ground state energy we have:

a) Ho= —Z—(k+1h,, (212)
b) #Ho = —Z+(x+1)h,. (21b)
This field dependence is illustrated in Fig. 2.

II. For the case h, = 0, h, # 0 (field perpendicular to the easy axis) we have, according
to [22], the following solutions of Egs. (16):

1) sin 0, = (ZR+w©)h,/w, sin 0, = (KZ|R+1)hy/w; (22a, b)
cos #; = Rcos 0, (23)
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where

=2Zz*-1 (24

and
2) cosfy; =cosf, =0. (25)

It was shown in [22] that the solution 1) corresponds to a minimum of #, for |A,| < A,

where

VA D+ Akw—(x+1)

7 (26)

hxc

This solution describes a spin configuration that we shall call henceforth “scissor phase”
(SP) (see Fig. 1). It was also shown in [22] that the solution (25) corresponds to a minimum
of #, for |h.|> h,.. In this case all the spins are aligned along the field which corresponds

to a paramagnetic phase (PP).
The dependence of the (approximate) ground state energy on the field strength was
given and illustrated in [22] for both phases, SP, and PP.

4. The spin wave energy spectra

The bilinear part 5#, of the Hamiltonian can be diagonalized [21, 38] by means of
the following canonical transformation:

a = uy (K)o +0y ((K)ay +up (KB +v12(K)BL,,

by = U3 (K)o +05 (K)ot +u2(K) By +v22(K)BL 4, 27
and J#, takes the form
Hy =Y (B u o +EP B B +AH , (28)
k
where
A, = = Y [Vi()+v5.(R]E"; n=1,2 (29
k,n

The coefficients (u, v) are determined from the set of equations

m1—E1(cn) m3Yg 0 myyy Uin

m3Yx mZ_El(cn) MY 0 U2 0 (30)
0 myYy my +E{ myy, V|

mgy, 0 M3y my+EP)  \vg

where y, = z71 Y, ¢*® with & as the vector to the nearest neighbour.
K
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These equations have nontrivial solutions if the determinant vanishes, which lead
to the spin wave spectra (cp. [21])

(EP)? = % (mi+m3)+(m5—mdyi +
+{F (m3—m)? +[(my +my)*mi—(my—m,)’miyi}? (€2))

where the sign + corresponds to n = 1, 2.

When determining from Eqgs (30) the coefficients (u, v) corresponding to the solutions
(31), one must take into account the canonical conditions of the transformation (27)
which read

2 2

Z(ulnuZn_vanZn) =0, Z (ulnvZn_uvaln) =0,
n/1 n/1

2 .
Z(ur%m_vr%m) =1,

n/1
2 2
Z (unlvnz"'unzvnl) =0, Z (uniunz_vnlvnz) =0,
il M

2
Y Wa—vh) =1, m=1,2 (32
n/1
The solutions are given in the Appendix.
In closer examining the energy spectra (31) we shall specify the direction of the mag-
netic field.
I. The case h, = 0, h, # 0 (longitudinal field).
In this case m, = 0 and the formula (31) reduces to

(El((n))z =3 [(my+my)+ \/(ml —m,)? +m§')’%z]2° (33)

In the other hand, the set of equations (30) splits into two subsets,

my —E{ may; > (u ln) (m1 +EP may, ) (’hn)
b . — 0’ n . = O. 34
(ms')’k my—EP ) \uz, msy my+EP ) \za @4

From the first subset we obtain the positive energy branches

EY? = Ef = % [(m;+my)+ v (my—m,)? +4my?] (35)

for which the coefficients of the diagonalizing transformation have the form

it | M3y - mM4Yr (36)
- = b} 2 E)
U my—E 2 +mBEET T [((my—ES +mpyi ]

- '_(ml"'Ek-) e —‘(m1_E1:)
2 [my—E ) +m3yiE T [(my—Ef ) +min ]

Utm =0, (@,m=12).
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Taking into account Egs (15) and (20a, b) we obtain
m, = IS,(Z+h), m, = IS,(Z+x«h,),

my = —I(S,S,)%, my=0 (37

where the upper sign corresponds to the case “a”, Eq. (20a). Hence, with the notation
S = §,/S; we have

a) Ef =1 71S,{Z@+D)+E+0h, £ V[ZE-1)+@—xh) > +452 (38a)y

for h, > —h,, and

b) Ef =1 IS{ZE+1)— S +1)h, = V[ZE—1)— (§—xh)]? +4592} (38b)

for h, < h,,.
II. The case h, # 0, h, =0 (transversal field).

The formula (31) may be written in the form
EF = (a+bi ¥ Ve+dp))* (39)
where
a=3%(mi+my), b=mi-mi c=3%(mi-m)),
d = (m}+m3)m3—(m}—m3)’m3. (40)

In particular, we have
1) for the scissor phase (SP):

a = }1°S}Z*(§*R™2+R?, b = I*S2S[R+(xZ +R)K2w],

L7*8{2%S8*R™2=R?), d =I*Si§Z°(AR+SR™Y)-(ASR™'+R) (41)

where
A = R+(kZ+R)h2|w;
2) for the paramagnetic phase (PP):
a = 3 PSS’ (A +h)* +(1+xh)*], b =I1°5,8,Z,
¢ = LI*S{S*(1 +h,)? —(1 +xh )],
d = I*S{S[S( +h,) +Z(1 +xh,)] - [Z8(1 +h,) +1+xh,]. 42)

It remains to be proven that the above energy spectra are real and non-negative in
the stability intervals for the respective magnetic phases following from Eqs (20) and (26),
i. e., we must show that the inequality

Ef >0 @3)

holds for all vectors k.
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L. The case h, =0, h,# 0
In this case E is given by Eqgs (38) for which the inequality (43) leads to the condi-
tions:

—Z(k+1)+ VZA(x +1)> —4K(Z% —y2)

) = = —
a) hz = 21€ hzc(k)
or
—Z(k+1)— VZHxc+ 1)} — 41(Z% —y?
b, < 20D VI AT D) (44a)
2K
b) h, < h(k)
or
h, = h. (k). ' (44b)

We easily verify that the first of the above conditions in each case, a) and b), will
ensure inequality (43) to be satisfied for all & if we put £ = 01in 4,.(k). In that case, however,
we readily conclude from Eqgs (20a) and (44a) that 4,,0) = h,..

II. The case h, =0, A, # 0
For convenience we rewrite the energy (39) in this case in the form

(Ei)? = P1(P*-Q)t 45
where
P =1 (m}+m3)+(mi—miy; > 0,
Q = [(ms—my)*pi —mymy] [(ms +m)*yi = mym,]. (46)
The inequality (43) is equivalent to
P2—Q>0and 0>0. 47
Because of

P?—Q = 1 (m2—m2)? +(m? +m3) (m3—miyE +2m my(m3 +miyi,
y,%(m%—mi) =0,  mm, >0, 48)

the first of the inequalities (47) is always true. The second one we easily prove to hold
for all k as follows:

1) in the ““scissor phase” (SP) we have from Egs (26) and (41)
Q = (I’S1S,)(Z> —7) (Z*— A%y7) = 0 for 0 < h < hy,

because of 1< A4 <Z and 0 <yZ < 1;
2) in the paramagnetic phase (PP) we obtain from Eq. (42)

Q = (I°S:8,)°[(1 +h) (L +xh) —97] [(1 +hy) (1 +xh)—Z%9].
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The quantity in the first square brackets is always positive, and that in the second ones for

2.2 _
A \/(K+1)2+4K(i:k—1) D _ 5

Hence, the inequality Q > 0 will be fulfilled for all k if we put 4,(0) in (49), and from
Eq. (26) we see that h,.(0) = h,,.

5. Final remarks

The results concerning the system’s ground state in the longitudinal field case given
here supplement those obtained for the transversal-field case in [22]. It is seen that in the
longitudinal-field case there exist, strictly speaking, two stable magnetic phases which
overlap in the field-interval {—#,,, h..> in which one of them is actually meta-stable (cp.
Fig. 2). However, if the system is in the meta-stable phase (spins antiparallel to the
magnetic field) it cannot pass by itself to the energetically lower stable state (with spins
parallel to the field), as this is prevented by an energy barrier due to the uniaxial aniso-
tropy (the spins would have to pass through the magnetically hard plane). This leads to
the well-known rectangular hysteresis loop for the system’s zero-temperature total magnet-
ization M, shown in Fig. 3. Note that the phase transition at + 4, is actually of zeroth

|
|
| o 1
q_ S;+S, i"’ (0,0)
1l 11l .
W I|/7zc =
II i i A ‘
< | S|
(mm) T ~(51+S,) =

Fig. 3

order (discontinuity of the energy), quite like the transition from the AF to the SF phase
in antiferromagnets [24], in contrast to the phase transition SP — PP in the transversal-
-field case which has been shown in [22] to be of second order.

The main result of the present paper is the derivation (in the FSWA) of the:spin
wave energy spectrum (31) for an arbitrary direction of the external magnetic field, and
the proof that in the longitudinal as well in the transversal-field case a careful analysis
of the positiveness and reality of the energy spectra leads to the same field intervals as
the minimization of the system’s approximate ground state energy. These results are
utilized in Part II in studying the system’s thermodynamic behaviour and will be extended



086

in [36] to the case of uniaxial two-sublattice ferromagnets with a magnetically preferred
plane.

The author would like to thank Professor W. J. Zietek for suggesting these investigat-
ions as well as for reading and correcting the manuscript.

APPENDIX
The coefficients u,,(k), v11(k), ... from Eq. (30) have the following form [21]:

Xln e X2n

_ _ X3n
Uin = A V1ins Uy = A Vins Uzp = A Dins

,  AA(X12X5—X504) 2 AX34-X,X,,)
Vi = B s Uiy = B

where
X1y = —(my+E™) § [m}—m2—(—1)"A]+[m2(m, — my)— m3(my +my)]y?
Xon = —{E®P(my+my)+ % [(m, +my)* —(—1)"A]}m;,
X3n = mau{} (my—my)* +E®(my—my)—(—1)"§ 4},
B = (X3, ~4%) (X 15X 32— X32M) = (X2, — 4%) (X1, X1~ X3,4), (n=1,2)
and
4 = 2m1m3m4'y,%

A = {(m}—m3)* +4[(m; +my)*m}—(m, — my)*milyi}E.
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