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The two-dimensional diffraction problem is shown to be mathematically identical
with a certain quantum mechanical model of collision of three collinear particles. An asymp-
totic expression of the solution of the wave equation was used to discuss the probabilities
of the elastic, rearrangement and dissociation processes. The model of three particles with
equal masses and equal potentials is discussed as a particular.case of the solution under
consideration.

1. Introduction

The one-dimensional models of collision processes have been studied extensively
[1]—[6]. It is well known that calculations of the transition amplitudes for the processes
above the dissociation threshold still present considerable difficulties.

We came across a solution of a scattering problem in acoustics mathematically very
similar to a certain quantum mechanical scattering problem of three collinear particles.
This quantum mechanical model, although drastically simplified, exhibits the essential
features of the three-body problem: it describes the rearrangement process and the dis-
sociation of a pair of bound particles under the influence of the third one.

First, we shall discuss the two-body subsystems needed for the solution of the three-
-body problem. Then, we show that in our case the Schrédinger equation for three particles
is identical with the wave equation in acoustics and we shall interpret the solution in the
“particle language”.

2. The two-body system

The two-body potential we shall discuss is of zero range and its effect on the wave
function can be incorporated into the Schrddinger equation -
2

- ch—z Y(x) = E¥(x) )
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as a boundary condition
d
o Y(x)+o¥(x) =0 for x =0 )

where x is the coordinate of the relative position of paricles i and j

2m;m; d
X =X;—X; =(r;—r;
i J o( i J) I:mi+mj

—00<r,-,'rj<00 (3)

and o is a real number. We put h = 1.
The equation (1) is written in the centre-of-mass systems of the two particles.
The solutions of the equation (1) satisfying the condition (2) are different from zero
on one semi-axis x only (the potential is impenetrable). Proceeding further, when con-
structing the three-body system, we shall consider the class of two-body wave functions
different from zero on the semi-axis x < 0

Y(x) = et Ves_ a+i\/€e‘i‘/§x for x < 0.
o—1i \/ E
Yx)=0 4 for x > 0.
If a < 0, there exists one bound state at the energy: E = —a* = —E, for which  (4)
Y (x) = (—20)%e™™ for x <0
Py(x)=0 for x > 0. 6)

The two-body #-matrix for the potential under consideration can be calculated applying
the method described in Ref. [7]. It takes the one-component separable form

CPI@DIp Y = (0 +ia) = (= p+id)

2i |/
_|.

Z4o

—w<pp < oo. (6)

Applying the limiting procedure («) = oo to the expression (6) we obtain the expression
for the hard-rod #-matrix [7]

(PtR)p Y > —2iz @)

The two-body z-matrix off the energy shell, i. e. for complex z, is involved in the calcula-
tions of the three-body T-matrix [8].

The zero-range potential may be considered as a limiting case of a very narrow and
deep square well potential with adjacent impenetrable wall, i. e. of the potential

v(x) = —vy for —6<x<0
v(x) =0 for —o0o < x < —9¢
v(x) = o0 for x = 0. ®)
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The condition for existence of exactly one bound state is -
n " — 3m
=< 0 < — : :
5 N > ®

and the binding energy is given by the equation describing the condition of smoothness
of the wave function at x = —9 ’

Y() _ cos (\/vo —E, ) _
——————=/E, f = —4.
vy = VB W70 —F, 9) VE,  for x (10)
If we apply the following limiting procedure
2
i .
00> = —200 E, < ® (11)

to the left-hand side of equation (10), assuming that E, remains finite, we obtain that the
logarithmic derivative of ¥Y(x) at x = —0 tends to a constant value of —a, thus verifying
in the limit the condition (2).

The boundary condition of the type (2) has been often used in nuclear physics [9],
[10]. It is imposed on the function u(r) = rR(r), where R(r) is the radial part of the three-
-dimensional wave function, and it acts as a central zero-range “delta function” potential.
The essential difference between the one-dimensional potential defined by (2) and the
radial “delta function” potential is that the former contains the “hard core” component,
whereas the latter does not.

When the absolute value of o tends to infinity the condition (2) takes the form

Px)=0 for x=0 (2a)

which describes the potential of a hard rod in one dimension. In the three-body model
we shall also discuss the case when one of the two-body potentials is of this kind. This
will be the model in which the scattering on a bound state leads to either elastic scattering
or dissociation and no rearrangement takes place.

3. The three-particle system

The position and momentum coordinates used in the three-body system are defined

as follows
2 %
(=) [_mzi_]

my+ms
- <m2r2+m3r3 —"1) [Zml(m2+m3) ]* 1)
my+ms my+my+ms
_ msk, —myk,
b= [2mymy(my+m3)]*

my(ky+k3)—(my+my)k,
[2my(my+m3) (my+my+m3)]F

(12a)

q1 =
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where r; and k; are the position and momentum coordinates respectively in the three-
-body centre-of-mass system. We shall also use the position coordinates s; and 5 as well
as the momentum coordinates p; and g;. The system (sy, #;) is related to that of (s5, #3)
by the. transformation
» 5§ = '—bS3+at3'
t; = —aS3—bt3 (13)
where

_ [ my(my+m,+m3) :l*
(my+my) (my+m3)

b= [ . myms jr
(my+my) (my+my) |
The matrix of transformation for the coordinates (p, ¢) is the same as in (13).
We choose the ordering of particles (1 2 3), i. e. r3 > r, > r; and, the applied poten-
tials being impenetrable, the original order cannot ever change. Hence, we always have

5; <0 and 53 <O.
The Schrodinger equation for the three particles in the centre-of-mass system takes

the form

2 2
I: g 6_] Y(s,t) = E¥(s, 1) (14)

T o

with the boundary conditions describing the action of potentials between the pairs (1, 2)
and (2, 3)

oy

== +a3'§p(33, t3) = 0 fOI‘ S3 = 0 (153)

oY

a_ +O(1T(Sl, tl) =0 fOI‘ S‘l = 0. . (15b)
51

The fact that we may incorporate the two-body potentials into the three-particle
equation in the form (15) is the result of the zero-range approximation for the two-particle
forces. Suppose we consider the Schrédinger equation

[=4+Vi(s)+Va(s3)]1 ¥(s, 1) = E¥(s, 1) (16)

‘where V; and V5 are the square well potentials of the type (8), as shown in Fig. 1.
The solution of Eq. (16) may be formally expressed by the equation

T(Sa t) b jds,dt,Ghard rod(S> t; '_sl> tl; E) X
x(Vi+V3) Y(s', 1) (17)
where V| and V; represent the attractive components of ¥; and V3 and Gpag roq 18 the
Green function equal to zero at the lines s; = 0 and s3 = 0. If in the initial state three

particles move freely, the plane wave term should be added to the right-hand side of Eq.
(17). We see that ¥(s, t) is entirely determined by its values in the region where ¥+ V5
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is different from zero. In the region where only one potential is different from zero the
wave function should behave as follows

(s, )= [dp[Cs(p) sin (VE+v0s—p? 53) €71
“or respectively .
¥(s, 1) [ dp[Cy(p)sin( \/ETUOI—-7 51) ], ' (18)

If the radii 6, and J3 of the potentials ¥; and V7 tend to zero, the region where both
V1 and V3 are different from zero contracts to a point. If the limiting procedures are of

t
S

Vo1 0
Sy

. £
Vor-Yo3 /" Vs ?3

Vss

Fig. 1. The potentials ¥3+ V3 as the function of the three-particle coordinates

the type described by (11) the logarithmic derivatives of (s, ) with respect to s; and s5
at the lines s; = —&; and 53 = —&; respectively, tend to constant values «; and o3
provided p remains finite. Neglecting those parts of the integrand in (18) for which p
may compete with v, (tending to infinity in the limiting procedure) seems justified because
of its strongly oscillatory character for large p. We see that in the zevo-range approxima-
tion the behaviour of the wave function inside the region of action of potentials is described
by the values of the logarithmic derivatives at the lines 53 = 0 and sy = 0, these values
being the same as in the corresponding two-body problems.
Instead of the condition (15b) we shall also use the condition

'II(Sl, tl) = 0 for S1 = 0 (le')

i. e. we shall assume a hard-core interaction between the pair (2, 3).
The potential ¥, between the pair (1, 3) is put equal to zero.

Eqs (14)~(15) determine the boundary value problem for the two-dimensional wave
equation. It is convenient to introduce the polar coordinates (r, ¢)

§3 = —rsin (@+¢)
ity = —rcos (P+ @)
§; = —rsin (@—¢)
ty = rcos (®—g) 19y
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where

my(m,+m,+ m3)2|‘* 20)

myms

tg 20 =[

sin 20 ="a; cos20 =b  (see (13)).
The coordinate system is shown in Fig. 2.

Sz

Fig. 2. The three-body coordinate system. The region .whe,re ithe order of particles is (1 2 3) is limited
by the lines ¢ =@ and p= —P

Using the polar coordinates we can write the Eqs (14) and (15) in the form

L9 0 +1'62 Y(r, ) = E¥(r, ¢) (21)
— | =\r= - — r, Q) = r,
r|or\ or r 0¢® <p ¢
with the boundary conditions
10
- Y(r, p)+azP(r,9) =0 for o = — (22a)
rog
10
S 30 Y(r, o)+, Y(r,p) =0 for p =@ (22b)
@
or
Y(r,9) =0 for ¢ =0a. (22b")

This equation was solved by Maluzhinetz [11] when discussing the problem of scattering
of plane and surface waves from the wedge with given face impedances. The boundary
conditions (22) in the acoustics problem read as follows

10 '
T Y(r, p)Fiksinf, =0 for ¢ = + (23)
rogp

‘where k? = E, and sin 0 are determined by the properties of the boundaries at ¢ = +@.
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In order to obtain the same notation as in Maluzhinetz work we put
o, = —iksin0y: o3 = — iksin 0 . 24

keeping in mind that the values 6- and 0, in the three-particle problem depend on both
the total energy k> and the two-body constant a3 or k% and «; respectively

iog 1 \/k2+oc§ —0s
e e e
Vi a2 2 \/k2+oc§ +og
oty 1 VK 4o} —ay

0_ = arctg

0, = arctgm =5 nm . 25)
In the quantum mechanical problem we are interested in the case
Imoa;, =0=1Ima;,
Rea; <0, Reag < 0. (26)
Using (24) we see that (26) is equivalent to the condition
Re 0, =0
Im 0, <0 if k>0. ' 27

In acoustics the condition (27) corresponds to the case of purely elastic impedances.
The meaning of equalities (24) becomes clearer if we introduce polar coordinates
for the momenta p and g

p3 = —ksin (9+¢')
gs = —kcos (@+¢)
p1 = —ksin(P—¢')
g1 = +kcos (P—¢'). (28)
The plane wave travelling from the reaction centre can be expressed in terms of these co-
ordinates as follows
exp {isy p1+it1q1} = exp {is3ps+itsgs} =
= exp {ikr cos (p—¢") 29
and the state in which two particles are bound and the third one leaves freely the re-
action centre, as follows
exp { —oss3+if3gs} = exp {—ik sin 0_rsin (P+ @)+
+ikr cos 0- cos (P+ @)} =
=exp {ikr cos (p+P+0_)}
or
exp {—oys;+ityq,} = exp {ik sin 0,7 sin (P — @)+
+ikr cos 0 cos (@ — @)} =
=exp {ikr cos (p—P—0,)}. (30)
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We see that the “channel” wave functions describing the situation in which two particles
are bound and the third one departs freely may be represented by a “plane wave” moving
in a complex direction ¢’ = —®—0_ (channel 3) or in the direction ¢’ = ®+0, (chan-
nel 1). :

The incident wave is written in the form: e ~#°°s(¢=¢)  yhere: @'isreal or ¢’ = &—0,
or ¢ = —P+0_.

Following the papers [11c] and [11d] we shall discuss the solution of the wave equa-
tion with £ = k2 > 0, which corresponds to the situation above the three-body threshold.

The solution ¥(r, ¢) is written in the form of the generalized Fourier transform

1 —ikr cos z
PY(r, @) e f e e sy 1 g)dz (31)
7

where y is the contour in the complex z plane known as the Sommerfeld’s contour. It
is shown for the case of real k in the Fig. 3.

The function ¥(r, ¢) is uniquelly determined by the boundary conditions at the lines

@ = @ and ¢ = —®, and by the radiation condition at large distances from the origin,
~N N
E\| iImz [S
3 3
=T m Rez
N &
AR
SN

Fig. 3. Sommerfeld’s contour

as well as by the boundness condition at r = 0. Maluzhinetz has shown that the transform
8(z) of the Sommerfeld’s integral (31) can be written in the form of the finite combination
of the special functions My(z) with different complex arguments z, and of trigonometric
functions '

) -1
n Qe[ . Wz . T, -
i~ oy — —gin =22 F 32
5(2) 75 08 5 (sm > sin — ) (2) [F(po)] 32

where

F(z) = M¢(z+¢+ g '—0+>M¢ (z—¢— g +0_) X

®o is the direction of the incident wave.
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The special function Mg(z) is defined by the equations

«© L] - Z (_.1)m+1
M(z)=| | I I 1— - -
p=1 m= 20(2n—1)+ 3 (2m-1)

1 v dv
= — | d tg— —— |- 34
xp [8(156[ a J g 46 cos (v— u)] (34)

The function My(z) is useful in solving several diffraction problems in wedge shaped
regions [11]-[13]. Some of its properties are given in the Appendix.

Putting the expression (32) into (31) we obtain the closed form of the solution of
‘the wave equation and hence also of the three-particle problem. Because we are interested
in calculating the transition amplitudes we have to study the asymptotic behaviour of the
solution at large distances from the origin. For this purpose we make use of the asymptotic
expression given by Maluzhinetz [llc]

R Cat

+C+eikr cos (¢—§D—0+)+C eikr cos (¢+(D+9_)+

+ Y C, exp {—ikr cos [p—(—1)"po—2n®]} for kr>1 '(35)
where
n 1) _
fgs 90) = 55 008 5 2 [F(po)] ™

Fp—m) 3 F(p+m) 36)

. me—n) . mpe . wet+m) . 7o

sin —sin —  sin ——— —sin ——

29 29 20 2¢

Ao, 9o) is the amplitude of the diffraction term,

7o n n
C, = 2sin — cos — Mg (20— = | M| = —0_
+ sin P cos 2d .p( 2) 4;,(2 +6,—-0 )x

X Mg <2<P+ z;' +29:t) Mq)(i 3575 +9+_‘6—) [F(?’o)]_l x

n(n+0 -t
X | cos ﬂ_i) $Sin %
2 29



580

1 \*
for: 0 < PF¢p < —arc cos( )
cos 6.

Ci=0

1
for: dF ¢ > —arccos( ) (37
cos 0,
C, are the amplitudes of the surface waves leaving the centre along the boundaries + @,

Co = (=D'F[(-1)'po—2n®] [F(po)] ™

_ 1 _
for —2n®—(—1)"| arccos—— +Re <
2 (-1 5 chImtpo+ %_‘ T
C,=0
for 2nd —( 1)"— cc ! +R | > 38)
—2nd—(— arc cos ———— e
® A chIm g %_ n (

C, are the amplitudes of the incident wave and of the waves reflected from the bound-
aries, being of the same nature as the incident wave.

As we remember, ¢, may be real which corresponds to the scattering of three free
particles,v or it may be equal to —®+0- or ®—0, which corresponds to the scattering on
the bound state. '

Making use of expression (A.5) we can modify the expressions (35)~(38) to obtain the
solution for the case when particles 2, 3 interact via the hard rod potential. The component
in (35) corresponding to the surface wave along the boundary ¢ = & disappears and for
the amplitudes f(p, po) and C- we obtain

R R 77 AN T :
C_ =2sin g cos 2% Mg (2(15— 5) Mg <2<D+ 3 +20_) X

[0 (ro=0- 5 +0_)] " [ Mo (-0 5 -0.)]

0 i
X [co_s 7@2-;—) +sin 7%:' ' (36a)

* The lines: @ + = — arc cos'( ) can probably be interpreted as the boundaries of the ge-

cos 0+

» 4 .
ometric shadow of the surface waves leaving the reaction centre. For the case @ < — which is under con-
TT

sideration only the first inequality in (37) is fulfilled.
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=i

' n P T

f(@, @o) = 2_450032—450[]\4"’ (%—@4— 3 _9_> J %
n ! 3n

XMy <%—¢—5 +0_> X {M.p (tp— 5 —(15+6_) X

-1
X Mg ((p— T —45—0_) <sin mp=—n) —sin %> -
2 ' :

29 29

w 3n
—Mg <.<p+ 3 —di+0_> Mg (<p+ > —@—9_) X

-1
« [ sin®OED _ gy TP | L (372)
Y 20 »

In order to translate the solution (35) into the “particlel anguage” we study its beh-
aviour in different directions g in the (r, @) plane. At large distances from the origin along
the direction ¢ = —®, i. e. along the line s3 = 0, #3 > —oo, the second term in (35)
tends to zero and may be neglected as well as the terms expressing reflected waves which
are of higher order in r~! than the third term (provided no reflected wave propagates
exactly along the boundary). Thus, C_ is the amplitude of probability of finding the
scattered wave in the channel 3. In the same way we can show that C_ represents the
amplitude of scattering into channel 1. ‘

The asymptotic behaviour of the plane wave in polar coordinates may be described
as follows [14]

greos@=o) 5 (Oikr)™* x

x {e*213(p— ') +ie*2n8(p — ¢’ — 1)} (39)

Comparing (39) with (35) we see that f(¢, ¢o) should represent the amplitude of the
plane wave travelling in the direction, this plane wave representing the wave function of
three free particles (see (29)).

These results could be derived more strictly by using Gerjuoy’s approach [15]. Accord-
ing to this theory of many particle scattering, the probability of a particular collision
process is given by a current of the scattered wave through a particular surface element
of the infinite sphere in the multi-dimensional space. In our case there are three types of
elements rde of a large circle in the (r, @) plane related to channels 1, 3 and to the dissocia-
tion channel, the directions of the normal vectors of these elements being ¢ = +& and
(p) < D respectively.

The simplest case of our model is the system of three particles with equal masses and
with equal potentials of the pairs 1, 2 and 2, 3. The solution is similar to that of an analog-
ous problem with one-dimensional “delta function” potentials [4], namely it consists of the
finite number of terms of the same nature as the incident wave and, of course, it could
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be found without using Maluzhinetz method. If we assume that in the initial state particles
1 and 2-are bound we obtain the solution of the scattering problem in the following form
(in the particle coordinates)

3u+i~/3qs
h—.‘x
a—i\/3Q3
xexp {1/2s3(—a+i /3 q3)—1/2t3(\/3 a+ig;)} +
. 3a+i/3 g5\ [ a+i/3 q; y
a—i/3q5/)\30—i\/3q;

xexp {—as; +itqs} (40)

(s, t) = exp { —as3+igst3} —

where: a3 = a; = o and g5 = _\/k2+oc2.

The last term was expressed in terms of coordinates s; and ¢, in order to show that it
represents a state function in channel 1, i. e. the reflected wave is at the same time the
surface wave leaving the centre along the direction of the boundary s; = 0. In that case
the diffraction term is zero, which is the consequence of the equality of both masses and

. of the potentials.
In order to obtain (40) from the Maluzhinetz’ expression (35) we put

0+=0_=0;<15=gand %:‘o—’g. 1)

Using the expression (A.7) we can write the solution in the polar coordinates in the fol-

lowing form
7 = 7
Y (r) exp {—ikr cos( p—0+ 8)} - J3tg (0—— E) X

T n
x exp {—ikr sin (p+0)} +tg (0— E) tg ((—)-— §> x

X exp {ikr cos ((p—@— g)} (42)

with reduces to (40) after using the relations
kcosO = q;
iksin @ = —a. (43)

The Maluzhinetz method can be applied to find the solution of equations (21) and
(22) for the negative values of E = k2, i. e. for the values of three-body energy below the
dissociation threshold. .

We put

k* = —m®> where m > 0; k = im. 44
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We look for the solution of Eq. (21) in the form

1
Y(r, ¢) = — Je’”’ “*s(z+ p)dz 45)
27
>
where the contour y’ is the contour symmetric with respect to the axis Im z and can be
obtained from the contour shown in Fig. 3 by shifting its upper branch to the right by

b
%’ and its lower branch to the left by 3.Further on we shall assume that k? = —m? >

>max (—a3,—03), i. e. that the channels for both the elastic and rearrangement processes
are open. We leave the boundary conditions in the same form as given in (23). The rela-
tion between the “angles” 0, and 0- and the two-particle constants a; and o5 takes now
the form

i“l \/0&1 m —oyg
0, = arctg ———= =

* Voai—m? \/ocl m* +o,

_ 1 \/061 - R -
~ aom? —a, 2
; . T
~0_ = arc tgm*3 = — \/“3 " % _T (46)
x/a%—mz 2 \/ocg—mz —ay 2

where the quantities under the In sign on the right-hand side of equalities are positive
and the logarithm is understood in the sense of its principal branch. We see that 6. and 6_
are now complex numbers with

Re0,, ReO_ = — -
2
and Im6;,Im6-<0. 47)
PR * . . . Va2 —m?
The functions sin § = — are now real and negative, while the functions cos 0 = —i

m m
are now imaginary with Im cos 6 < 0. )

The closed form of the solution ¥(r, ) is given by the expression (45) with s(2)
given by (32). In order to obtain the asymptotic expression of the wave function at large
distances from the origin we deform the contour into two lines Re z= + . Following the
procedure applied in Ref. [11c] we can extract the terms corresponding to elastic and re-
arrangement scatterings. The remaining integral can be treated with the saddle point method
and asymptotically appears to be exponentially decreasing in all directions (¢) < @.

The author is indebted to Professor J. Stecki for his encouragement and interest
in this work.
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Note added in manuscript: After this manuscript was submitted for publication
it came to the author’s knowledge that a somewhat similar problem had been studied by
H. M. Nussenzweig, Proc. Roy. Soc., 264A, 408 (1961). The model discussed by Nussen-
zweig can be regarded as a special case of the model considered in this paper when taking:
My = 00, My = Mz, Vi = Viard core ald assuming that the motion is confined to the

3n .
region s; < 0, 53 > 0 (245 = —4—) . In this case the expressions for the scattering amplitu-

des can be written in terms of elementary functions (see Equations (A.6) of this paper).

APPENDIX A

Here we collect the properties and the integral representations of the special function
M(z) introduced by Maluzhinetz in his studies on the diffraction problems [11c], [11d],
[12]. In the cited literature the special function called by us My(z) is notated ¥y(2).

The definition and integral representations

z 2 (—1)ym+1
Mg (2)= ﬂl [ : (A.1)

2¢(2n D+ - (2m 1)

LU e"p[ j f %o u)] @2

—ioo

0

1 (chzs—1)
Mo(@) = exp |- = | — 7~ ——
’ o sch <—’ s) sh2ds

ds|. A3
3 (A3)
The integral in (A.3) is convergent for |Rez| < 2®+ — .

The zeros and poles nearest to the point z = 0 are

+(”+2<p
Za= -
=2

3
z= = (3” +2€D> respectively (@ > 0). (A4

|nIm z
.For Imz| - o0 we have My(z) = O[e:xp Y

] . (A.5)
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) n , .
For the values of @ such that 4 — = —, where n and m are integers, we have
T m

My(2) I 1/ cosi2a(k,) \P g o
o) = cos 1/2z/n—a(k, I) RS
k=1 I=1 -
. . alk,l)+ %
TT (=1
My(z) = exp = uctguduy for n even (A.6)
k=1 1I=1 a(k,l)

where a(k,l) = —{ —— — —m———) , and the fraction _’n; is irreducible.

2
Other properties of the functions My(z) are
My(z+2P) T
——— =ctg1/2 — .
Myz—23) - &Y (“ 2) (A7)
7 w b4 nz
Mq; (Z'I‘ E) qu.(Z— 5) = Mé <5> Ccos '4—¢‘ (A.8)
Mo(z+®)Mo(z—B) = [Mg(P)]* Moy 2(2). (A.9)

The logarithmic derivative of the function Mg(z) is described in detail in Ref. [11a].
The tables of the function M 4(z) were constructed by Zavadskij and Sakharova [12].
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