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1t is shown that in the case of linear and uniform dielectric, the Kronig-Kramers rela-
tions for dielectric susceptibility are a purely mathematical consequence of the causality
principle (§ 2). Treating the above relations as an equation for &(w), under rather weak assump-
tions, a general solution of this equation is found (§ 5). The expressions of Cole-Cole (§4)
and Cole-Davidson (§ 3) were confronted with the Kronig-Kramers relations and it turned
out that the both agree with these relations, and that the expression of Cole-Davidson
contradicts microscopic interpretation of relaxation function. Putting &(w) as an analytical
function of , a simple form of e(w) is found, having all the correct features of the Cole-
-Cole expression with exponential but complex relaxation function (§ 6). A more sophisti-
cated model is also discussed, following from the general form of &(w), which under
additional assumptions may probably serve for the microscbpic interpretation of “skewed-
-arc” Cole-Cole diagrams (§ 7).

1. Introduction

In the majority of experimental works devoted to the investigation of dielectric re-
laxation in liquids, the interpretation of results is based on models of Debye, Cole-Cole
or Cole-Davidson (a full list of literature concerning this subject may be found e.g. in
the monographic work Hill, Vaughan, Davies 1969).

Although in the model of Debye the physical sense of the parameters used is clear,
in the remaining expressions the physical sense of the additional parameter f§ remains
problematic. Usually this parameter is. connected to continuous distributions of relaxation
time calculated by approximate methods from macroscopic theory or from microscopic
models ' (see e.g. Glarum 1960a, 1960b), which does not guarantee the validity of such
continuous distributions. Moreover, so far the proof is not found in the literature that
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the complex dielectric susceptibilities &(w) postulated by Cole-Cole or Cole-Davidson,
fulfil the Kronig-Kramers relations.

Hence the aim of this work is to draw as many conclusions as possible from the
macroscopic theory and to confront it with expressions discussed here.

2. Fundamental macroscopic equation -

Let us consider a linear dielectric of no spatial dispersion. It is assumed to be isotropic,
in order to simplify the writing of the formulae, and its non-dipole polarization is deter-
mined by the dielectric susceptibility &. Then the value of the displacement vector 2(t)
in the field &(f) may be written as follows

D(t) = ey E()+ } d(t—1t") £(@t")dt’, 2.0

where ®(t) is the derivative of the so-called relaxation function. However, for simplicity,
in the following we shall call the function @(¢) as well as the function @y(t) the relaxation
functions. With the aid of the Heviside function J#(t), Dirac delta 6(¢) and introducing
a new.relaxation function

B(t) = 2.0(1)+H(DD(2)
equation (2.1) may be written in the form of a convolution
+o

D) = | Be—1)E@)dt' = (D * &) (¥). (2.2)

From now on we shall treat Eq. (2.2) as an equation in the sense of a distribution which,

as we shall soon see, is very cgnVenient from the point of view of calculations. Let us now
calculate the Fourier transform & of (2.2).

FD =F(D*E) = FOFE. (2.3)

As is easily seen (&) does not exist in the functional sense for periodical fields which
are of interest to us, however, it is well determined in the sense of a distribution. We now
propose a definition

« §F D)
o) = = 2.4)
AFE)
On its basis :
L o) = Fb = e, + | Ot dt | (2.5)
N 0 , .

which is a well known formula for the complex dielectric susceptibility. To simplify nota-
tion instead of &(w) and @(¢) we now introduce

I e

n(w) @5)

S 0
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where ¢, is the static dielectric susceptibility. Thus, instead of (2.5) one may write

n(w) = ofo Py(e” " dt, (2.6)
0
from which
1n'(w) = Ren(w) = \/ g {7 [Re &y]+ 7 [Im &y}, - @27
7'(@) = — Im (o) = \/ S (=F{Im @]+ 7 [Re 0,]), @.8)

where &, and & are Fourier transforms of cosine and sine respectlvely On the other -
hand, the Hilbert transform has the property

HF, =—F, and HF,=F. (2.9)
‘With the use of (2.7), (2.8) and (2.9); a simple calculation gives the Kronig-Kramers rela-
tions which in the complex form become

H(n) = —in. ' (2.10)

From the above consideration one sees that these relations. are a purely mathematical
consequence of accepting the causality principle in the shape (2.1). Let us further write
formulae determining ®y(¢) by #(w). This may be done easily using (2.6) and the properties
of Fourtier transforms &%, and &, As a result we obtain

(1) = \/72; 7 [n(—a);i—n(w)] _ \/7% 7, [n(‘—vw);n(co)]' @.11)

"Apart from this, on the basis of (2.6), ®y(¢) must be normalized in such a way that
J op(t)dt = 1. , (2.12)
0

Let us notice further that the existence of @y(¢) fulfilling (2.12) ensures fulfilling by ()
the Kroénig-Kramers relations!. Let us also draw the formula allowing one to calculate
‘the macroscopic relaxation time #z. T his time is, as it is well known, the time after which
the polarization amplitude after removing the constant field, falls e~* times. Thus if the
field & is switched off in the moment # = 0, then according to (2.1) we have

0

= J Py(t—1)dr'. S (213),

— 0

D(1).
(ss A 800)60'

L Strlctly speaking, any function for which #, and Z; exxst leads to Kronig-Kramers relations,
and is hence potentially a “relaxation function”. Thus tables of &, and & provide a large number of
formal solutions of (2.10). Choosing solutions appropriate for discussion is however difficult.
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Thus the formula seeked is of the form

o
5 @N(tR_t,)dt, e e__,l. (2.14)

3. Study of the Cole-Davidson expression

For the C-D expression

n(w) = 0<p<1, (3.1

(1+iowt)®’
which after insertion into (2.11) and referring to tables of Gradshteyn and Rizhik (1962)
gives the relaxation function

ou(t) = ——

T [\
)

fulfilling also the normalization condition (2.12). It is thus clearly seen that we are dealing
here with the case of an non-exponential behaviour of relaxation and not with a conti-

.2'—75N(t)~‘['

t
T

(3.2)

C_b[e— Davidson
p=12

1 —

7 2
Fig. 1. Dy(r) curves for Cole-Davidson and Debye models

9

nuous spectrum of relaxation times as used to be accepted up to now. The behaviour
of this relaxation function as compared to the exponential relaxation function is shown
schematically in Fig. 1. The equation for ¢z drawn from (2.14) is of the form

r <ﬁ, —’—) = (B (.3)

and, of curse, if we proceed to the Debye model, i.e. put f = 1, then tz = 7.
In this case it is also possible to obtain a relaxation function

Wy(t) = — [ By(r)dt (.4
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which from (3.2) is equal

/t k
AT (?) g |
"0 = 5 (1) Zﬁ(M...(m' i

The relaxation function (3.4) according to its microscopic ihterpretation (Glarum 1960a)
should hold conditions

Py0) =1, Yy(0) = 0. (3.6)
Now it is easy to see that (3.5) does not hold the first part of Eq. (3.6).
4. Study of the ‘C"olye-C’olé‘expresjsion

For the C-C expression

1
n(w)=m, 0<B<L1. 4.1)

Unfortunately, it was not possible to give the explicit form of ®y(z). On the other hand,
one may easily obtain from (2.11)

2 . )
Dy(t) = —sin nZ—BJ (w7)" sin @ .
P

o 1+2(wr)® cos %ﬂ +(w7)*

p—1
2 . np ﬁi_ J’ (w1)" ™" cos wt d(wo). i

o 142(w7)f cos Ezlz +(w1)?

Let us assume that the first of the mtegrals written down, exists, otherwise there would
be no problem to discuss. The other integral exists, bacause the 1ntegral exists

o]

J' (w0 Yd(wr) 1 . np dy n . nf
= —sin — = — §in —. .
: 2 1+y2 2 2 (4.3)
o 142(wr)? cosn—ﬁ +(wr)?# b " +y p v
2 ote—-
Now we have

f Oy(i)dt = — 2sin ™ G AeCaty den || =1,
o 2 /3 4.4)
5 0 14+2(w7)f cos — +(wr)?

as intuitively, the-function in the square brackets vanishes in the upper limit. As the obtained
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results is very important, a detailed proof of this intuitive argument is given in the Ap-

pendix.
Finally, for p# 1, ®y(¢) is normalized and moreover in this case ¥y (¢), which

one may have’ simple from ‘(4.2), agrees with the conditions (3.6).

5. Macroscopic model of relaxation basing on the causality principle with &(w) as an
analytic function

The basic equation which gives the possibility of determining the shape of the n(w)
function, is equation (2.10). In order to exploit this formula we make three assumptions
concerning #(w): ’

(1) n(w) is an analytic function of a complex variable o,

(2) n(w)/e vanishes at infinity faster than o,

(3) n(w) has no poles on the real axis nor first order poles in the lower part of the

Gauss plane.

Tmw

Cn

Ce
£ Y

Wy Rew

Fig. 2. Integration paths in equations (5.1)

The first part of the last assumption is essential in order for the relaxation function
@y(1) to tend to O when ¢ — co. Now one may already see that

‘o0

Hn] (wo) = P.V. f

-

= — 111;1‘[11(_60_)(1_&) - llim jn(w)dw +2i z res (@) _

T g0 w‘—wo T r->w w—'wo wk'—COO
Ce Cr: wkeZ +
. : § ' (@) ‘
= in(we)+2i res (@ R (5.1)
Ld W — Do
o)kEZ+

where -curves C, and C, are marked in Fig. 2, and «, are first-order poles in the upper
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part of the Gauss plane Z,. Joining (5.1) and (2.10) we obtain

n(w) = % i 5.2)
: :wk—w
%

where a, are residues of the n(w) function. Thus one sees that n(w) possesses only first-
-order poles, which is naturally a consequence of the Kronig-Kramers relations. The
relaxation function corresponding to these relations, using (2.11) equals

Oy(t) = Y ia e (5.3)
k
with the normalizing coefficient
o
L) (5.3)
Wy,

k
. _ R T _ R T
As in general w, = wy +iw, and a; = a +iagy

Rs R I_I
. ay (W — )+ a,wy

n'(w) = = oS (5.9
" L @y +(ly

Y aiof — o) —aioy
= > o (5.5)
(0k — @) +(@))

n'(w) = —

These formulae are, unfortunately, too complicated for discussion without more specific
assumptions. Thus in this patagraph we shall consider only two cases: (a) if we put of =
= af = 0 then, as may be seen directly from (5.4) and (5.5), we obtain the Frohlich model
of discrete spectrum of relaxation times. (b) Assuming the existence of ‘only one pole,
which, following (5.3"), leads to a; = w,;, we have

(] — o)+ (@)’
(@f ) +(@)*

n'(w) = (5:6)

olo

, (@f )’ +(01)*
These results apply equally well to optical frequencies. Formula (5.7) does not give however
the detailed shape of the Lorentz line, but its close approximation if @} > !, which
is not distinguishable experimentally. It is worth noting at this point that Shimizu (1970)
starting from Louville’s equation for the density operator, found for the shape of lines
- in NMR a formula differing from the shape of the Lorentz line in the same way as formula
(5.7).

Finally, following Frohlich (1960) we. shall formally generalize the formula (5.3)
replacing summing over poles by 1ntegrat1ng by Z., then

By(t) = i [} qgg)e'ﬂfdfz. ’ (5.8)

n'(@) = 3.7
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From this, thanks to (2.6)

. a(Q
n(w) = Q—(Z daQ 5.9)

Zy

where on the distribution function a(Q) only the condition of the existence of the integral
(5.8) is imposed. In this way we have obtained a very general SOlU.thIl of equation (2.10),
however of no practical importance.

6. Single-pole model with of < 0

Introducing denotations f = —w¥/w] and @] = v we obtain from (5.2), (5. 6),
(5.7) and (5.3)

_ 1+ip

n(w) = T+i(@ith)’ B =0, 6.1y
ooy 1+otp+p? v\ T
n'(w) = m, n'(w) = m > 6.2)
1+zﬁ
et (6.3)
It is easy to verify directly that
) o 2

(' =1/2)*+(n" +Bj2)* = }i} (6.4)

Consequently, acéording to the proposed model, on the Cole-Cole diagram, ' and 5" gi-
ven by formulae (6.2) lie on the same fragment of the arc as those for the C-C expression,
”ﬁc—g
2

Hence the single pole model with w¥ < 0 takes over the most positive feature of the C-C
model, which assures the same degree of accordance with experiments in Cole-Cole dia-
grams as that offered by the C-C expression, and has exponential but complex relaxa-
tion function.

‘The parameter f, introduced here, may be evaluated from experimental data by
the formula

if the B parameter is connected with the Bc_c parameter by the relation f = ctg

ﬁ = — [t —(11 //2] (65)
n

Hence the characteristic time

ey (s ) (6.6)

) »nl_nllﬂ
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One thus sees -that similarly to the C-C expression, an increase of T as compated to the

Debye time, is observed. .
Let us further analyze the properties of absorption and dispersion curves given by

: 1 1
formulae (6.2). The absorption curve reaches its maximum equalto — —
2 14+pV14p2
for Wy = +(1+62)", hence diminishes with the increase of p. Its half-width

do(z, p) = %[4(1+;32)+4/3(1+/32)%—1]th 6.7)

increases with increasing 8, for example Ao(z, 3)/Ao(r, 0)=1.44. The dispersion curve for
1 CL L ‘ .
o < — [<\/ 1+(B/2)>—p/2] lies under the Debye curve, and later on, after intersection,

above it. Thanks to this all the discussed behav1our is at least qualitatively in accordance
with experimental results.

To interpret the f parameter let us write down the behaviour of 9(¢) for ¢ > 0 after
immediate removal at the moment # = 0 of the constant field &,. Owing to (2.13) and
(6.3) we have

-~ B .. B

D(1) = (8,—€x)8e t(cos = t—isin = t) s (6.8)
from which one may see that the motion of vector 2(¢) is not a purely damped motion,
but a periodic damped motion of period 78-1. The investigated model is thus characterized
not by a continuous distribution of relaxation times, as is usually postulated for cases
when the Cole-Cole diagram turns out to be a fragment of an arc, but by two times 7 -
and 7! showing the way in which the system approaches equilibrium. It is also evident
that in practice 7! > 7 or even 7f~'> 7, hence the damping is very strong.

7. Remarks on the two-pole model

The second model after the single-pole model is naturally, in terms of 31mpllclty, the
two-pole model Inserting into formulae (5.4) and (5.5) denotations co,lcr =11, oo} =
—Bi af T = & BT = {x and restricting summation to k = 1,2, we obtain
8
n'(w) = ZM (1.1)
+ (ot + By

{ot+ ﬁk) o1

i@ = y AL (.2
2
B . SeBrt&n
oY it e O 7.3)

k=1 k=1
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In this model six free parameters® are present, thus one may believe the model to be very
elastic, and because of this, difficult to apply in practice. To illustrate the adaptibility
of the model, two Cole-Cole diagrams are shown in Fig. 3, corresponding to equations
(7.1), (7.2) and (7.3). The first (1) is composed for '

tL=6=0 =0;0 =% 0, ; (7.4)

A

Fig. 3. Cole-Cole diagrams for/ — two-pole model with conditions (7.4), 2 — two-pole model with condi-
tions (7.5), 3 — single-pole model with = 0.26, 4 — Debye model

and, as may be sees, is of “‘skewed-arc” type. The second one (2) was calculated for

C1=C29 §1=§29ﬂ1=ﬁ2=%’2=%3 '(7-5)

Ty

which leads to {; = 2/5 and & = —1/5. Both these diagrams illustrate the “fitting ability”
to experimental data of the two-pole model.

8. Conclusions .

The most important conclusion which seems to be apparent is the necessity of con-
fronting models of dielectric relaxation, constructed by a formal generalization of models
already known as well as microscopic models, with macroscopic theory (§§ 3 and 4).
Such a confrontation, as was shown, may protect against errors and help to interpret
results.

The most correct approach would be, naturally to construct an effective statistical -
theory, however such an enterprise is met with many difficulties, a fact which is well known.

2 Dr J. Makosz suggested that, because of physical ‘meaning of 7°(w), the assumption Cp(wTr+
+Pi)+E& > 0 can be made. This assumption leads to LuPr+E&=0 for w=0, and in result Eqgs (7.1),
(7.2) and (7.3) are simplified, what is very important in practice.
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APPENDIX

The upper limit in formula (4.4) may be written as

lim }0 f(x) cos (x&)dx,

&= 0

where
\ g
Jix) = <x1_”+x1+ﬁ+2005 n_2/3> )

It is easily verified that for x = 0 and 0 < < 1, f(x) is a monotonically decreasing func-
tion when x — oo. Apart from this"

3n

}) f(x) cos (xE)dx = 2; J(x) cos (xE)dx +

4n+ 1 4n+ 3 . 31:
+ i {4 51 f(x) cos (xg)dx+ j f(x) cos (x&)dx} = j f(x) cos (xé)dg;,
2¢ 2: i

where for lower estimation, in the sum, in positive integrals instead of f(x) the f(x) value
on the right edge of the integration range was inserted. In negative integrals the value
f(x) at the left edge of the integration range was inserted. By an similar procedure we
make an upper estimation

joof(x) cos (x&)dx = j f(x) cos (x&)dx +
0 0

4n 1 4n+ 1 F4
© . 2¢
+ 21 {4 j f(x) cos (xg)dx+ j J(x) cos (x&)dx} < g f(x) cos (x&)dx.
n n— 3
22 2{ T
As a result
31:

| a

0 = lim j f(x) cos (x&)dx < lim j f(x) cos (x&)dx < hm j f(x) cos (xE)dx = 0

&~ 0 2o 0

Q.E.D.

The author expresses thanks to Professor J. Janik and Dr J. Zioto for helpful discus-

sion and Dr G. Williams for the notes which let the author to avoid some important
calculation mistake in §4.
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